已确定有 10 亿吨生物质原料可用于生产可再生生物燃料和生物化学品。这是为运输部门提供轻型、重型和航空燃料能源的关键碳原料之一。木质纤维素原料的利用有助于减少石油进口需求、促进农业发展、创造就业机会和减少温室气体排放,从而提高能源安全。然而,迄今为止,运营挑战阻碍了大批量木质纤维素燃料和化学品的工业生产。因此,美国能源部已投入大量研究资金,以了解和提高先锋纤维素生物炼油厂的运营可靠性。本文介绍了从淀粉乙醇工艺中采用的木质纤维素转化技术。所开发的工艺最终成功演示了使用多种原料(包括柳枝稷、能源高粱和两种玉米粒纤维)进行的 1,000 小时综合运行。本文重点介绍了工艺开发,解决了困扰纤维素糖领域许多问题(并将继续困扰这些问题),例如生物质进料到设备中、高灰分含量、多样化的副产品价值等。
注意:本网络研讨会(包括参与者的所有音频和图像以及演示材料)可能会被录制、保存、编辑、分发、内部使用、发布在 DOE 网站上或以其他方式公开。如果您继续访问本网络研讨会并提供此类音频或图像内容,则表示您同意 DOE 和政府或代表 DOE 和政府出于政府目的进行此类使用,并承认您不会检查或批准此类使用,也不会因此获得报酬。
摘要:本文使用代表性样品研究了位于西班牙安达卢西亚西部的原始高岭土矿床。表征方法包括 X 射线衍射 (XRD)、X 射线荧光 (XRF)、筛分和沉降粒度分析以及热分析。确定了陶瓷性能。在一些测定中,我们使用了来自 Burela(西班牙卢戈)的商用高岭土样品,用于陶瓷工业,以便进行比较。高岭土矿床是由富含长石的岩石蚀变形成的。这种原始高岭土被用作当地陶瓷和耐火材料制造的添加剂。然而,之前没有关于其特性和烧成性能的研究。因此,本研究的意义在于对这一主题进行科学研究并评估其应用可能性。用水冲洗原始高岭土,以增加所得材料的高岭石含量,从而对岩石进行富集。结果表明,XRD 测定原料中的高岭石含量为 20 wt%,其中粒径小于 63 µ m 的颗粒占 ~23 wt%。粒径小于 63 µ m 部分的高岭石含量为 50 wt %。因此,通过湿法分离可以提高该原料高岭土的高岭石含量。但该高岭土被视为废高岭土,XRD 鉴定为微斜长石、白云母和石英。通过热膨胀法 (TD)、差热分析 (DTA) 和热重法 (TG) 进行热分析,可以观察到高岭石的热分解、石英相变和烧结效应。将该原料高岭土的压制样品、水洗获得的粒径小于 63 µ m 的部分以及用锤磨机研磨的原料高岭土在 1000-1500 ◦ C 范围内的几个温度下烧制 2 小时。测定并比较了所有这些样品的陶瓷性能。结果表明,这些样品在烧结过程中呈现渐进的线性收缩,小于 63 µ m 的部分的最大值约为 9%。总体而言,烧成样品的吸水率从 1050 ◦ C 时的约 18-20% 下降到 1300 ◦ C 烧成后的几乎为零,随后实验值有所上升。在 1350 ◦ C 烧成 2 小时后,开孔气孔率几乎为零,并且在研磨的生高岭土样品中观察到的体积密度达到最大值 2.40 g/cm 3。对烧成样品的 XRD 检查表明,它们由高岭石热分解产生的莫来石和原始样品中的石英组成,除玻璃相外,它们还是主要晶相。在 1300–1350 ◦C 下烧结 2 小时,可获得完全致密或玻璃化的材料。在本研究的第二步中,研究了之前研究的有希望的应用,即通过向该高岭土样品中加入氧化铝(α-氧化铝)来增加莫来石的含量。混合物的烧结,在湿法加工条件下,用这种高岭土和 α-氧化铝制备的莫来石,通过在高于 1500 ◦ C 的温度下反应烧结 2 小时,使莫来石的相对比例增加。因此,可以使用这种高岭土制备莫来石耐火材料。这种高铝耐火材料的加工有利于预先进行尺寸分离,从而增加高岭石含量,或者更好地对原料高岭土进行研磨处理。
摘要 热能储存是节约能源和优化整体效率的重要因素。开发本地能源储存系统需要一些有关原材料的信息,而原材料在当地市场上供应充足。本研究旨在调查亚齐传统生产的盐的特性,以了解其作为热能储存原材料的潜在用途。样品取自亚齐大区,在马弗炉中以 400°C 和 800°C 的温度加热处理。进行这种处理是为了研究性质的变化并确定盐制备的最佳程序。所有样品都经过多种技术表征,包括 XRF、XRD、SEM/EDS、TGA/DSC 分析、密度、热导率和电解电导率。XRF 表征表明,当地的亚齐盐被评为 III 类盐。此外,根据 TGA/DSC 表征,熔化温度接近 800°C,焓值接近 492 kJ/kg。亚齐盐可作为热能储存材料的证据已经足够,此外,提高亚齐盐的热处理温度有助于提高其焓值、晶体尺寸、密度、热导率和电解质电导率。
作为生物制药生产过程的第一步,必须对最佳质量产品进行彻底分析任何合成的原材料。在寡核苷酸的情况下,这些原材料称为核苷磷光矿,并在随后的DNA合成中充当构件。在本应用注释中,我们基于生物相容性的Agilent 1290 Infinity II Bio Lc开发了LC方法。通过将LC与Agilent 6545xt AdvanceBio LC/Q-TOF耦合,可以通过准确的质量来识别几种杂质,并且方法开发可以通过四通道敏捷1290 Infinity II II II Bio Flexible柔性泵来轻松进行,这表现出极好的保留时间和面积精度。基于此,进行了其他方法开发,以将LC运行时间减少66%,保留了出色的性能,并进行了方法兼容性实验,显示了从常规的Agilent 1290 Infinity II LC中的无缝方法转移。总的来说,这些结果表明,1290个Infinity II Bio LC是对寡核苷酸合成原材料的强大和多功能分析的理想选择。
如果欧盟航空业要在不抑制交通增长或依赖行业外碳补偿的情况下实现其长期脱碳目标,那么改用可持续航空燃料 (SAF) 是实现行业内温室气体 (GHG) 减排的少数方法之一。尽管之前整个运输领域的欧盟燃料政策对刺激 SAF 行业的发展作用不大,但最近提出的 ReFuel EU 计划可以为引入和扩大生产超低碳燃料的先进 SAF 行业发出明确的政策信号。然而,政策制定者必须设定切合实际的 SAF 部署目标,使其与可用原料生产的燃料量相匹配。本研究评估了 2025 年至 2035 年欧盟支持 SAF 生产的资源基础,仅关注可持续可用原料的潜在产量。
摘要:牛奶中的抗生素残留是乳制品加工过程中严重的健康和技术问题。本研究旨在验证治疗后未使用抗菌药物,同时考虑停药期,并评估在确认 HPLC-HRMS(高效液相色谱-高分辨率质谱)Orbitrap 分析后在现场条件下进行筛选测试的可靠性。此外,使用新的 Compound Discoverer 方法研究了预期或非目标代谢物的存在。尽管样本是在第七次挤奶时采集的,但 29% 的样本中仍显示存在抗菌药物,有时还显示其代谢物(恩诺沙星和林可霉素)。此外,在 9% 的样本中,由于存在母体药物和代谢物,因此发现了未申报的治疗。最后,提出了两种新的恩诺沙星代谢物 ENRO-N-甲基乙酰胺和 ENRO-鸟氨酸的推定鉴定。鉴于这一证据,必须牢记,一些具有药理活性的代谢物也可能对消费者和奶酪行业整个牛奶加工过程构成风险。
莫来石 ( 3Al 2 O 3 ·2SiO 2 ) 在自然界中并不大量存在,必须人工合成。它具有许多适合高温应用的特性。莫来石的热膨胀系数非常小(因此具有良好的抗热震性)并且在高温下具有抗蠕变性。最重要的是,它不易与熔融玻璃或熔融金属渣发生反应,并且在腐蚀性炉内气氛中稳定。因此,它被用作炼铁、炼钢和玻璃工业中的炉衬和其他耐火材料。生产莫来石有两种商业方法:烧结和熔合。烧结莫来石可从蓝晶石(一种在变质岩中发现的天然矿物)、铝土矿和高岭土的混合物中获得。该混合物在高达 1600 0 C 的温度下烧结。烧结质量包含 (85–90%) 莫来石,其余主要为玻璃和方石英。将适量的氧化铝和高岭土在约 1750 0 C 的电弧炉中熔合在一起,可以制成纯度更高的莫来石。熔合产品含有 (>95%) 莫来石,其余部分为氧化铝和玻璃的混合物。