AdmaPrint 原料采用感光树脂和陶瓷粉末固体(称为浆料)的混合物特殊配制而成。使用光固化和浆料可以在印刷产品中实现高分辨率和非常精细的表面粗糙度。此外,它还可以防止与使用干粉有关的健康危害和(交叉)污染。AdmaPrint 原料可用于打印复杂的几何形状、大型和精细的结构,从而产生各种功能产品。
塑料由于其独特的特征和多功能性,很可能仍然是全球无处不在的材料。在循环且可持续的未来中,塑料是由可再生原料等可再生原料产生的,例如可回收的塑料,生物质和CO 2 /氢,需要转化全球价值链。用再生塑料产生新塑料是首选的途径,因为它是塑料废物的最佳用途。但是,即使全球回收率具有其理论潜力,也只能根据回收原料产生约60-70%的塑料体积,考虑生产,使用,收集,(BIO)降解,微塑性形成和回收率的产量的损失。因此,仍需要大量可持续处女塑料生产量来替代这些损失并满足不断增长的需求。基于生物量和CO 2的塑料是以圆形方式实现此目的的唯一剩下的选择。可以预期将在
SAFS是目前在商业航空中使用的液体燃料,可以将CO 2排放量减少多达80%。可以从多种来源(原料)生产,包括废脂肪,油和油脂,市政固体废物,农业和林业残留物,湿废物以及在边际土地上种植的非食物作物。也可以通过直接从空气中捕获碳的过程合成生产它们。SAF可以被视为“可持续性”,因为它们的原料不与粮食作物或产出竞争,也不需要逐步的资源使用(例如水或土地清理),并且更广泛地不会促进环境挑战,例如森林砍伐,土壤生产力损失或生物多样性损失。虽然化石燃料通过排放以前已锁定的碳来增加CO 2的整体水平,但SAF回收CO 2,该CO 2被原料中使用的生物质吸收在其生命过程中。
图 1 显示了构成原料至 RD、RJ 和 RN 路径的离散组件。路径输入对应于 CA_GREET 模型中的参数。路径输入对应于 CA_GREET 模型中的参数。使用 BORD 计算器以 Tier 2 形式提交申请。这是因为 LCF S 法规要求对任何创新工艺使用 Tier 2 模型。AltAir 使用的工艺使用异地氢气生产商作为通过管道连接的原料组件,该组件未包含在 Tier 1 模型 RD 路径中。因此,使用了 CARS Tier 1 BORD 模型,并进行了微小更改,如本报告后面部分所述。输入被汇总并分配给所有炼油产品,原料产量通过能源分配计算。
AM内有不同的增材制造过程类别,这些过程类别由ISO/ASTM 52900:2021 Standard(ISO/ASTM,2021)进行了分类。在图3中可以看到不同的过程类别。在这些过程类别中,存在不同原料和能源的组合。例如,在定向的能量沉积过程类别中,通过将激光作为能源和电线组合为原料,然后将AM过程称为激光金属用线(LMDW),或者原料为电线,并且能量源是电弧,则该过程称为电线,然后称为电线和弧形增材制造(WAAM)。所有AM过程类别中的共同点是计算机辅助设计(CAD)模型数据的输入,该数据将其切成多个层,然后以添加的方式通过零件制造来指导零件的图层。
“使用可再生和低碳原料,例如生物质,农业,住宅和工业废物生产能源产品,这是SHV Energy Group的激动人心的机会biolpg为客户提供了一个倒入解决方案,我们对客户的响应不知所措。我们正在与原料提供商,技术供应商和政策制定者合作,以确保基于生物的创新继续繁荣。我们计划在未来20年内大大发展生物燃料的组合。”
将全球变暖限制为1.5°C以下的挑战要求所有行业立即实施新技术和更改实践。航空业占人类诱导的CO 2排放的2%,占所有运输排放的12%。脱碳行业很难实现,该航空业严重依赖于高密度的液体燃料。持续依靠所谓的可持续航空燃料,这些燃料使用第一代农业原料,这使问题更加复杂,从而在食品和饲料中创造了生物质之间的权衡,及其用作能源发电的原料。脱碳航空也是由于开发电动飞机的问题而具有挑战性的。替代原料已经存在,可以为减速气候变化提供更可行的途径。这样的选择是使用气体发酵转换温室气体(例如使用微生物乙糖原从食品生产和食物浪费)进入燃料。actogen是厌氧微生物,能够从气体CO,CO 2和H 2产生醇。澳大利亚提供的原料资源可用于彼此接近的H 2和CO 2生产,用于气体发酵。在这篇综述中,我们提出了天然气发酵技术提供的原则,方法和机会,以取代我们对澳大利亚航空燃料生产的化石燃料的依赖。