绿色柴油的混合速率显着提高,使生产商能够在其最终产品中获得较低的碳强度。碳强度是一种测量特定燃料的生产和燃烧中发出多少碳的方法。源自原油的汽油,喷气燃料和柴油的汽车强度约为100。生物燃料来自非原油原料的生物燃料的碳强度阀较低,低至20个,具体取决于用作原料的原材料。总体碳强度通常会驱动监管信用,因此
同时,欧洲的千兆交易的兴起有望产生大量的生产废料(即从分配的用于测试,维护和翻新与销售无关的产品和电池中,这将极大地有助于回收原料,尤其是在短期内。在十年结束时,将有超过100 gwh的生产废料回收,代表原料的主要来源。这也是报废量达到顶峰然后稳定的时间,因为公司提高了生产和成熟,从而达到了运营效率。从2030年代中期开始,EOL电池的涌入将逐渐开始统治回收流,占2035年的原料的72%,到2040年。
因此,质量平衡方法是一种会计类型系统,其中在输入阶段(生产)记录了可再生原料的数量,然后将(分配)归因于输出阶段(销售)的最终产品。可再生原料使用的“会计”是通过发出独特的可持续性声明(证书)来操作的,该声明(证书)陈述了可再生(Bio-Circular)原料的数量归因于每批出售的产品。对于所有监护链中的所有参与者来说,在三个月的会计期内都记录,验证和审核了输入(生产)和输出(销售),并且必须始终是“平衡”。
• 能源部目标:“利用大幅减少或消除对关键材料的依赖并利用回收材料原料的技术,将电动汽车电池组成本降低至每千瓦时 150 美元以下”
摘要:大多数塑料制品制造商主要偏爱基于石化原料的原生聚合物,而不是再生塑料原料。主要原因是缺乏有关再生塑料质量、适用性和可用性的可靠信息,部分原因是缺乏适当的分离技术。在本文中,我们介绍了我们正在进行的根据塑料类型分离塑料并提高再生塑料信息可靠性的努力,使用首创的区块链智能合约,该合约由使用人工智能的多传感器数据融合算法驱动。我们已经展示了如何使用不同的数据融合模式来检索塑料废物的各种物理化学参数以进行准确分离。我们已经讨论了这些智能工具如何帮助有效地分离混合塑料,并可以可靠地用于塑料的循环经济。使用这些工具,分离器、回收商和制造商可以可靠地共享数据、规划供应链、执行采购订单,从而最终增加再生塑料原料的使用。
SAF供应遇到了挑战,例如所需的原料的可用性有限,早期开发阶段的某些转换途径的技术成熟度,竞争来自非悬而未决部门的其他可再生燃料,例如公路运输,待处理的监管部门批准以及已宣布的生产设施的能力和Offtake的运营阶段