摘要 骨髓炎的特点是进行性骨质破坏和死骨形成。在原有疾病如糖尿病中,骨髓炎会变得严重并加剧病情。口腔颌面外科医生必须理解其复杂的医疗和外科治疗才能彻底根除疾病。本文旨在报道一例罕见的糖尿病未控制的广泛性上颌骨髓炎病例及其综合治疗。患者为一名 58 岁的男性,左上颌区域疼痛和肿胀,并伴有脓液排出。全身性疾病被确诊为未控制的糖尿病,并且有 1 年前左上磨牙拔除后伤口不愈合的病史。计算机断层扫描结果显示右侧广泛性死骨形成和骨质破坏延伸至左上颌骨。微生物培养结果是肺炎克雷伯菌和摩根氏菌。随后,在糖尿病得到控制后,对受累颌骨和牙齿进行大面积死骨切除术和多次拔除术。对口腔和鼻腔黏膜进行悬吊缝合以避免形成死腔。未控制的糖尿病合并上颌骨髓炎的综合围手术期管理包括死骨切除术、基于培养结果的确定性抗生素治疗和糖尿病调节,以提高此病例的成功管理。
随着材料科学和生物医学的发展,纳米材料在医学领域的应用得到进一步的推动。在疾病的诊断和治疗过程中,需要使用多种药物,让这些药物在特定的时间到达特定的位置并以特定的速度释放是一种理想的状态,可以提高药物的生物利用度,减少药物对正常组织的不良反应。传统的药物输送方式如片剂、胶囊、糖浆、软膏等都有一定的局限性,而新型纳米药物输送系统的出现,进一步提高了药物输送的精准度和药物的疗效。众所周知,胃癌的发展最严重的后果就是幽门螺杆菌的感染,对于胃癌患者,治疗主要是手术、化疗、靶向和免疫治疗等综合治疗。虽然胃癌的诊断和预后已经取得了长足的进步,但胃癌的诊断和预后仍然不佳,患者通常确诊时已是晚期,目前的治疗方法对患者的获益有限,导致5年生存率较低。纳米材料在早期诊断中可能发挥关键作用。纳米药物输送系统可以显著提高晚期胃癌的化疗、靶向治疗和免疫治疗的效果,减少原有治疗方案的副作用,为患者带来更好的获益,是一种很有前途的胃癌治疗方法。本文介绍了纳米材料在H. pylori和胃癌诊断和治疗中的应用。
“界面就是器件”。2000 年诺贝尔物理学奖获得者赫伯特·克勒默的宣言精辟地概括了界面在电子器件功能和性能中发挥的核心作用。[1] 对于基于低维或拓扑量子材料的器件来说,这句话更是如此,因为它们的性质通常对表面和界面周围的几个原子层敏感。[2-5] 如此精密的“量子器件”需要能够以良好可控的方式实现原子级清洁、突变和平整界面的制造技术。这显然超出了低真空、环境空气或溶液环境下的传统制造工艺的范围。分子束外延 (MBE) 是一种可以提供最佳界面条件和可控性的制备方法,采用超高真空 (UHV) 环境、高纯度蒸发源、缓慢的生长速度和可精细调节的生长参数。[6] 标准 MBE 技术通常用于生长薄膜和垂直异质结构。一些平面纳米结构也可以通过 MBE 制备,[7,8] 但其控制效果不如传统光刻或电子束光刻那么好。通过 MBE 生长的“干净”样品必须经历“肮脏”的制造过程才能制成器件。这些过程中产生的不受控的表面和界面会显著改变器件的性能,尤其是由表面/界面敏感的量子材料制成的器件。人们非常希望通过分子束外延直接生长由量子材料组成的极其脆弱的器件,然后将其封装在超高真空环境中,以保留其原有性能。在过去的几年中,在平面纳米结构和器件的直接分子束外延生长技术方面取得了令人鼓舞的实验进展,[9-18] 这在很大程度上得益于
水和电力系统模型的软(单向)耦合是研究水资源可用性对电网性能影响的主要方法。然而,这种方法并没有明确地捕捉到电网状态与水系统层面的运营决策之间的关键动态相互依赖关系。在这里,我们解决了这一差距,并引入了一个新颖的数值建模框架,该框架将多水库系统模型和电力系统模型硬耦合起来。该框架捕捉双向反馈机制,从而使运营决策能够根据水和能源系统的状态做出。我们根据柬埔寨电网的真实案例研究评估了该框架。鉴于该国计划进一步实现电网脱碳,我们在三种电网配置上测试了该框架——原有电网和安装两种不同太阳能容量的电网。模拟实验在有反馈和无反馈的情况下进行,同时通过 1,000 个随机时间序列的流量、太阳能生产和负载探索外部强迫中的不确定性。正如我们的结果所示,水和能源系统的硬耦合降低了运营成本和二氧化碳排放量,同时增加了可再生能源的整合。在有利条件下(水库流量大且电力需求低),该系统的年运营成本节省了 44%,二氧化碳排放量减少了 53%。对水库运营和输电线路使用情况的时空分析表明,季风时间和各个电网组件之间的互连也在影响系统对硬耦合的响应方面发挥着重要作用。总体而言,像这样的模拟框架提供了一个建模框架,用于测试旨在提高水能系统性能的管理和规划解决方案。
a. 自从 1969 年颁布《国家环境政策法》(NEPA)并要求全面披露环境信息(在本例中包括详细说明处置方案)以来,要求更多地依赖密闭式或陆上处置疏浚物的压力显著增加。与此同时,由于城市化、农业和现有场地可用容量的利用,高地处置场地正在迅速枯竭。对水质改善和/或维护以及对水生育苗、产卵、鱼类通道和洄游以及觅食区的保护的关注,是将开放水域和外围湿地从潜在处置场地清单中剔除的因素(第 81 条)。应该指出的是,除了受污染材料的情况外,疏浚作业不会引起监管机构的过多关注。虽然不能断然排除开阔水域和湿地作为处置方案,但疏浚人员一般已将注意力转向高地,将处置问题从水生环境转移到陆地环境,但特殊情况除外,例如密西西比河下游,每年因沉降和侵蚀而消失 50 平方英里的沼泽。在那里,人们故意在浅浅的开阔水域处置废物,从而形成沼泽。由于城市扩张的推进,随之而来的自然或开阔区域的减少,以及最近人们越来越意识到无节制开发带来的社会经济和环境影响,控制土地使用的力度不断加大。近年来,只有在五大湖这种特殊情况下,湖内已建造了封闭式处置设施 (CDF) 岛,以及在某些允许建造 CDF 和岛屿的港口,才在原有水生环境的地方形成了陆地。
RM Microwave 是 RF/微波行业的马拉松选手之一。51 年前,三个厌倦了在大型公司工作的人成立了技术研究与制造公司,并开始制造有线电视组件。多年来,公司更名为 TRM Microwave,并将日益增长的能力集中在国防市场上。其约 90% 的业务用于国防,其余用于太空任务。TRM 的产品包括无源 RF/微波组件、集成组件和子系统。大量的 RF/微波电路功能(波束形成器、功率分配器、耦合器和混合器)可作为独立产品提供;但更多时候,它们是集成组件的构建块。这些广泛的组件设计让客户相信 TRM 拥有执行具有挑战性的程序的知识和生产能力。随着系统设计人员转向更换行波管放大器,TRM 发现开发用于 GaN 功率放大器的组合器的需求日益增长。除了低损耗,高功率合成器还必须消散设备反射功率产生的热量。该公司的工程师正在开发创新方法来应对这一热管理挑战,这为定向能和导弹计划打开了大门。为了支持其增长,TRM 于今年早些时候扩建了其工厂,将其位于新罕布什尔州贝德福德的工厂面积扩大了一倍,达到约 25,000 平方英尺。该公司在现有建筑上增加了一个两层楼的扩建部分,然后对原有建筑进行了改造,使两层建筑看起来相同。扩建创造了两个制造楼层,一个用于标准生产,另一个用于新产品开发。增加的空间使标准生产流程与价值流保持一致,包括
自 1995 年以来,高通一直维护和运营其“P”热电联产厂。“P”热电联产厂为占地超过 200 万平方英尺的园区提供支持,其中包括高通公司总部、演讲厅、自助餐厅、医疗中心、工程和研究办公室、实验室、数据中心、网络运营中心、卫星通信枢纽、原型制造和三个停车场。1995 年,高通安装了 2.4 兆瓦 (MW) 燃气轮机热电联产系统,由三台 800 千瓦 (kW) Solar Turbine Saturn 发电机组成。800 kW 涡轮机使用天然气,但如果天然气供应中断,可以切换到使用喷气燃料。涡轮机产生的废热被送往热回收装置,产生热水,用于为吸收式制冷机供电。基于对原有燃气轮机系统的积极体验,高通公司在 2005 年启动园区扩建时增加了对热电联产的依赖。作为扩建的一部分,高通公司增加了一台 4.5 MW Solar Mercury 50 燃气轮机和一台 Broad 1,400 吨吸收式制冷机,后者由涡轮机废气直接驱动,以帮助满足不断增长的场地电力和冷却需求。“P”园区热电联产厂每年可节省 500,000 美元的运营成本。通过为设施提供热水的热回收装置,每年还可节省 100,000 美元。现场发电每年还可减少超过 1400 万千瓦时 (kWh) 的公用电力需求,从而节省 122,000 美元。热电联产系统每年可节省高达 775,000 美元。
近几个月来,氢能在欧洲能源转型中的作用已成为重要辩论话题。本文旨在阐述欧洲气候行动网络在氢能问题上的立场,包括生产、适当的最终用途和基础设施考虑。为了符合科学和《巴黎协定》的 1.5°C 目标,欧洲需要在 2040 年实现气候中和。要实现经济的全面脱碳,欧盟需要在 2050 年前将能源需求减半,并将可再生能源的一次能源供应增加两倍,并将大量可再生能源整合到所有行业(工业、建筑、交通等)。这意味着到 2030 年实现温室气体减排至少 65%、能源节约 45% 和可再生能源占比 50% 1。这还需要在供暖、制冷和运输部门实现高水平的直接电气化。实现这些目标的先决条件是融入循环经济方法。即使欧盟实现上述气候和能源目标并实施重要的循环利用和减少资源使用努力,某些领域的能源需求仍将无法通过直接电气化来满足。氢及其衍生物2可在2050年满足欧盟最终能源需求的五分之一(从2030年的566 TWh,即欧盟最终能源需求的6%,上升到2050年的1109 TWh)3。如果由可再生电力生产氢气,则是满足这一需求最有前途的技术之一。然而,由于可再生氢不是主要能源,而是一种需要从可再生电力转换而来的能源载体,这意味着大量的能源损失,因此我们可以认为它是一种有限的资源,需要反思它的开发和使用,以及它以必要的规模和速度交付的能力。鉴于目前几乎所有的氢气都来自化石燃料,欧洲氢能行业很有可能无法完全转向可再生氢能,而成为继续投资化石燃料和维护原有或建设新基础设施的一种方式,而这些基础设施本应退役。
胃癌是全球第三大癌症死亡原因(1)。大多数胃癌是在晚期才被诊断出来,因为其症状和体征往往不明显且无特异性,导致整体预后不良,而在早期发现的情况下,5 年生存率可超过 90%(2-4)。内镜检查仍被认为是检测 EGC 最有效的方法(5)。然而,早期胃癌(EGC)特别难以识别,因为它通常表现为细微隆起或凹陷以及淡淡的红色,很可能被识别为正常粘膜或胃炎。此外,胃壁内的侵入深度也很难预测。10 项涉及 3,787 名接受上消化道内镜检查的患者的研究显示在诊断前 3 年内上消化道癌症的漏诊率为 11.3%(6)。一项涉及 2,153 例病变图像的荟萃分析显示,白光成像 (WLI) 内镜诊断 EGC 的受试者工作特征曲线下面积 (AUC) 仅为 0.48 (7)。近十年来,人工智能 (AI) 在医学中的应用引起了广泛关注,人工智能辅助内镜诊断是研究的热点。人工智能是指计算机执行与智能生物相关的任务的能力,例如模仿人类的认知能力的“学习”功能 (8)。人工智能的子领域包含机器学习和深度学习(图 1)。机器学习这个术语最初由 Arthur Samuel 于 1959 年创造,是计算机科学的一个领域,即系统能够在没有特定程序的情况下从输入数据中“学习”的能力 (9)。分类模型训练中常见的机器学习方法包括集成树、决策树、支持向量机、k近邻等(10)。深度学习最初于1998年应用于图像处理领域,是指在用于特征提取和转换的机器学习算法的基础上,在非线性处理中应用各层(11)。神经网络与人脑相似,特别模仿紧密相连的神经元来识别模式、提取特征或“学习”输入数据以预测结果(12)。不同的模型训练范式被称为“神经网络”(13)。对于标准内窥镜图像,已经推荐了几种用于自动检测早期胃癌的计算机辅助检测(CAD)算法。原有图像分类模型的性能提升主要依赖于视觉特征和大规模数据集,这在 EGC 中很难实现
在“现成”新抗原中共享的移码突变的潜在使用疫苗1,2,尼古拉斯·麦克格拉纳汉(Nicholas McGranahan)1,2,* 1癌症基因组进化研究小组,伦敦大学癌症研究所,保罗·奥戈尔曼(Paul O'Gorman),保罗·奥戈尔曼(Paul O'Gorman)伦敦亨特利街72号WC1E 6BT,英国 *信件:nicholas.mcgranahan.10@ucl.ac.uk(N。McGranahan)。摘要:与因错义突变引起的新抗原相比,癌症患者之间从微卫星不稳定的肿瘤中衍生出的新抗原是在癌症患者之间更常见的。Roudko等人最近的一项研究。评估共享的移状新抗原的免疫原性,这些新抗原有可能用于“现成”新抗原疫苗。主文本免疫检查点抑制剂(CPI)在一系列癌症类型中彻底改变了癌症治疗。通过靶向可防止免疫系统攻击癌细胞的抗体,这些疗法可以防止肿瘤免疫逃避,从而使T细胞能够识别出肿瘤细胞被激活并最终促进主动免疫反应[1]。新抗原是癌症突变,会引起免疫系统识别为异物的肽(图1)。但是,只有一部分患者受益于这些疗法,从而引起对“现成”癌症疫苗的新兴趣。与靶向疗法相反,该疗法的重点是特定可行的改变(例如Roudko等人的研究。egfr激活突变)[2]在许多患者的肿瘤中共享,免疫疗法的成功很大程度上归因于“私有”推定的肿瘤新抗原的数量[3],这些肿瘤[3]主要特异性地特异性属于每个肿瘤。例如,对结直肠癌的错义突变的研究发现,所研究的每个肿瘤样本的特征都具有明显的突变特征,并且仅与其他肿瘤标本共享多达6个突变的癌症基因[4]。那么,在发展有针对性的新抗原疗法的主要挑战是缺乏共同的靶标。如果每个患者的新抗原曲目都是独一无二的,那么问题是“现成的”?Roudko及其同事[5]最近的一项研究探讨了由微卫星不稳定基因组区域引起的共同的新抗原,并评估了这些区域是否可以刺激免疫反应。微卫星不稳定性描述了重复的核苷酸序列,这些核苷酸序列由于复制误差而累积突变。由于不匹配修复功能的丧失,从微卫星不稳定性区域得出的移码突变可以保留在基因组中。专注于微卫星不稳定性高(MSI-H)胃,子宫内膜和结直肠癌,因为观察到的增加了