将打靶特定人源基因的 Cas9 和 sgRNA 转染到 HEK293 细胞。转染所用的质粒 DNA 上含有 表达带双端核定位序列 ( NLS )的 Cas9 及 sgRNA 的表达框,通过 TransIT-X2 (Mirus) 转染 试剂进行转染。转染所用的 Cas9 mRNA 进行了假尿苷和 5- 甲基胞嘧啶修饰且带有双端 核定位序列,使用 transIT-mRNA 转染试剂将 sgRNA 和 mRNA 共转染。 Cas9 RNPs 使用脂质 体 RNAiMAX ( Life Technologies ) 进行反向转染, RNP 的终浓度为 10 nmol 。 Cas9 蛋白上不含 核定位序列。 EnGen Cas9 含有双端核定位序列。编辑效率通过 T7E1 实验进行分析,结果 以修饰百分比进行统计。
免疫防御机制在整个生命树中都存在,以至于历史上将原核生物抗病毒药反应与真核免疫无关。不同的真核生物中的防御机制类似地被认为是特定于进化枝的。然而,最近的数据表明,原核生物防御系统的模块(域和蛋白质)的子集在真核生物中是保守的,并且填充了先天免疫途径的许多阶段。在本文中,我们提出了祖先免疫的概念,该概念与原核生物和真核生物之间保守的免疫模块相对应。提供了祖先免疫的类型后,我们推测可能导致生命领域特定免疫模块的选择性压力的选择性压力。对祖先免疫的探索仍处于起步阶段,并且似乎充满了阐明免疫进化的承诺,并且还可以识别和破译经济,生态和治疗意义的免疫机制。
在原核生物中,CRISPR(成簇的规律间隔的短回文重复序列)最初是作为防御入侵质粒和病毒的机制而开发的。Ishino 于 1987 年首次发现 CRISPR 结构。1 在其他细菌和古细菌中发现许多类似结构后,Jansen 于 2002 年创造了 CRISPR 这个绰号。2-3 后来,Mojica 及其同事推测 CRISPR 模式及其相关蛋白质可以抵御遗传影响,并可能具有免疫防御活性。4 然而,这一领域的三位主要贡献者是 Charpentier、Doudna 和 Zhang。CRISPR Cas-9 的机制首先由 Charpentier 阐明。后来 Charpentier 和 Doudna 报道了 Cas-9 介导的生化表征和系统优化。5 张是第一个在多细胞生物中实现 CRISPR Cas-9 遗传修饰的人。6
1 医学生物学作为一门科学,是生物学和遗传学史上的标志 2 细胞和人体的化学组成。生物分子中的化学键 3 生物聚合物、一般结构、脂质、多糖 4 蛋白质结构 5 蛋白质功能 6 原核细胞和真核细胞的结构 7 生物膜(结构、功能) 8 膜蛋白和膜转运 9 细胞器(概述、结构、功能) 10 细胞骨架系统 - 概述、中间丝 11 细胞骨架系统 - 微管、微丝 12 导致发现 DNA 作为遗传信息载体的实验 13 核酸结构 14 原核生物和真核生物基因组(特征和差异) 15 人类基因组的结构(组蛋白、核小体、染色质) 16 线粒体基因组 17 DNA 复制 18 原核生物和真核生物中 DNA 复制的比较 19 DNA 损伤的类型及其原因 20 DNA 修复机制(NER、BER、错配修复 21 DNA 双链断裂修复 22 染色体不稳定性和非整倍性 23 分子生物学的中心法则,原核和真核基因 24 RNA 分子的类型和转录的一般特征 25 原核生物的转录 26 真核生物的转录 27 真核生物的转录后修饰 28 RNA 编辑和逆转录 29 遗传密码 30 tRNA 和氨酰基-tRNA 合成酶,核糖体结构 31 翻译 32 翻译后修饰 33 蛋白质折叠和蛋白质降解,蛋白质分选 34 原核生物基因表达调控-操纵子模型,示例 35 真核生物基因表达调控(概述) 36 转录水平的调控,转录因子 37 转录后水平的表达调控(从细胞核输出,mRNA退化,非
6 NEA,“核电在氢经济中的作用:成本和竞争力”,2023年3月1日,可在此处获得。 7根据NEA报告,“在欧盟和核新建中生产太阳能的氢的成本在很大程度上相似。 [..]一般而言,从廉价电力(例如摊销核电)中受益的技术(例如) 核-LTO)和可再生能源在具有较高资源捐赠的地点(例如) solar-me和solar-na)提供非常有竞争力的氢,约为每kgh2 2美元”(§2.2.2)。 关于氢存储,运输和分配成本,NEA报告强调,“具有稳定产生的系统(即核)的储存,运输和分配成本,其比具有可变生产的系统(即可变可再生能源)低四到五倍。 ”(§2.4)。 8从委员会到欧洲议会,欧洲理事会,理事会,欧洲经济和社会委员会以及该地区委员会,2022年5月18日,Repowereu计划,COM/2022/230最终,可在此处获得。6 NEA,“核电在氢经济中的作用:成本和竞争力”,2023年3月1日,可在此处获得。7根据NEA报告,“在欧盟和核新建中生产太阳能的氢的成本在很大程度上相似。[..]一般而言,从廉价电力(例如摊销核电)中受益的技术(例如核-LTO)和可再生能源在具有较高资源捐赠的地点(例如solar-me和solar-na)提供非常有竞争力的氢,约为每kgh2 2美元”(§2.2.2)。关于氢存储,运输和分配成本,NEA报告强调,“具有稳定产生的系统(即核)的储存,运输和分配成本,其比具有可变生产的系统(即可变可再生能源)低四到五倍。”(§2.4)。8从委员会到欧洲议会,欧洲理事会,理事会,欧洲经济和社会委员会以及该地区委员会,2022年5月18日,Repowereu计划,COM/2022/230最终,可在此处获得。
此外,人工智能还用于核工业,以增强自动化、进行燃料补给和维护规划、培训核人员进行正常和异常操作、进行在役检查、裂纹和缺陷的评估和表征、用于反应堆设计、安全、保障、实时风险评估、长期运行/寿命应用、加强工作场所安全以及基于计算机模拟的在线剂量测定。然而,人工智能的变革力量也带来了挑战,包括透明度、信任和安全问题以及其他道德问题。
• 定义核能人工智能 • 核能人工智能是指应用人工智能技术和算法来增强、优化和简化核技术的各个方面。 • 这包括核反应堆运行、辐射探测、核材料分析、废物管理,甚至控制核聚变等领域。 • 通过利用人工智能的模式识别、复杂数据分析和决策能力,核能人工智能旨在通过提高效率、安全性和可持续性来彻底改变核工业。