基因编辑技术的发展具有巨大的潜力,可以加速农作物性状改良,帮助我们满足不断增长的全球人口的粮食需求。然而,将基因编辑工具传递到宿主基因组并获取其访问权限,以及随后恢复成功编辑的植物,是新植物育种技术应用的重大瓶颈。此外,最适合实现预期结果的方法差异很大,取决于物种的基因型和目标基因变化。因此,开发和改进多种传递和再生策略非常重要,这样才能从各个角度处理每种应用。植物原生质体的瞬时转化和再生就是这样一种策略,它具有独特的优势和挑战。在这里,我们将讨论原生质体再生在新植物育种技术应用中的应用,并回顾有关成功原生质体再生的相关文献。
过去 60 年,集成电路中晶体管数量的迅猛增长推动了电子技术的进步。因此,现代电子芯片包含数十亿个场效应晶体管 (FET),而最先进的硅 FET 由薄至 7 纳米(相当于 13 个原子层 1 )的结构构成。然而,像硅这样的三维材料在进一步减小厚度时,迁移率会急剧下降。此外,非晶态和粗糙的沟道/氧化物界面(也存在于先进的高 k 技术中,如二氧化铪,HfO 2;k,介电常数)的影响变得越来越有害。因此,仅仅依靠标准硅技术进一步缩小现代电子设备的体积正在慢慢停滞 2 。继续缩小设备体积最有希望的解决方案之一是使用具有原子级厚度的二维 (2D) 沟道 3、4 的 FET,它们本质上提供亚纳米级的沟道厚度。然而,2D 技术缺乏能像二氧化硅 (SiO 2 ) 与硅一样有效的绝缘体。理想情况下,这种绝缘体必须能够扩展到等效氧化物厚度 (EOT;与某种替代绝缘体产生相同电容的 SiO 2 厚度) 的单个纳米以下,并且质量足够高以保持低漏电流。此外,绝缘体应该与通道具有明确的界面,绝缘体缺陷数量少,并且介电稳定性高。Hailin Peng 和同事在《自然电子学》上撰文,表明高迁移率 2D 半导体 Bi 2 O 2 Se 可以共形氧化为原子级薄的天然氧化物亚硒酸铋 (Bi 2 SeO 5 ),随后可用作 FET 5 中的栅极绝缘体。目前,六方氮化硼 (hBN) 被广泛认为是二维电子器件最有前途的绝缘体,因为它是结晶的,并且具有干净的范德华界面 6 。然而,hBN 不太可能满足低漏电要求
NSSF(网络切片选择功能) NEF(网络暴露功能) NRF(网络存储库功能) PCF(策略控制功能) UDM(统一数据管理器) AF(应用功能) AUSF(认证服务器功能) AMF(接入和移动性管理功能) SMF(会话管理功能) UPF(用户平面功能) UE(用户设备)
近年来,人工智能 (AI) 在处理大量数据和产生可操作见解方面取得了惊人的进步。它对各个行业的影响是显而易见且显著的,影响、改善甚至彻底改变了整个行业。近几个月来,生成式人工智能的兴起及其根据给定输入或上下文生成新内容(例如自然语言文本或视频)的能力 [1],成倍地提高了人们对人工智能在创新、行业转型、新业务机会和运营简化方面所能提供的期望。许多生成式人工智能模型被打包为基础模型 (FM)。FM 有多种类型。有针对文本、图像、声音和视频的基础模型,但最著名的 FM 是面向文本的模型,称为大型语言模型 (LLM)。LLM 是人工深度神经网络,可以生成新的面向文本的数据。它们使用来自各种来源的大量文本数据进行训练,例如在线书籍、新闻文章、社交媒体帖子、编程代码和网页。LLM 在各种自然语言处理 (NLP) 任务中表现出色,例如文本摘要、问答、情感分析、代码生成和机器翻译。它们还可以生成富有创意和吸引力的文本,例如故事、诗歌、笑话、歌词、图像、音频和代码,所有这些都由基于文本的提示驱动。从行业角度来看,FM 可以彻底改变我们与软件产品和服务的交互方式。它们可以实现新形式的人机通信,例如对话代理和个人助理。它们还可以增强软件产品的功能和用户体验,例如搜索引擎、电子商务平台和社交媒体网络。Open AI 的 ChatGPT [2] 等产品的兴起表明这种技术对社会的影响有多么深远。人工智能的变革力量在许多企业中都显而易见,包括电信行业。多年来,人们观察到人工智能在电信用例中的重要性日益增加,从而导致了“人工智能原生电信公司”一词的兴起。爱立信最近的一份白皮书 [3] 将“人工智能原生”一词解释为具有“内在可信人工智能能力”的系统,其中人工智能是设计、部署、操作和维护功能的自然组成部分。FM 的强大功能和灵活性使其成为人工智能原生系统的明显基石。Lu 等人。AI 原生系统利用数据驱动和基于知识的生态系统,在该生态系统中创建和使用数据来产生新的基于 AI 的功能,在需要时用学习和自适应 AI 取代静态的、基于规则的机制”[3]。开发包含 FM 组件的软件产品可能会引入法律和知识产权 (IPR) 问题以及额外的工程复杂性。FM 的随机性、数据质量、模型大小、可信度、安全性、监管和隐私方面 [2] 放大了与软件生命周期相关的挑战。呼吁采取行动关注基于基础模型的系统的设计方面 [4],但这一领域需要研究和实践界的更多关注。本文从工程角度反思了利用电信网络中 FM 的 AI 原生系统及其相关影响。
• 可定制的 Wi-Fi 服务级别:设置、监控和执行关键 Wi-Fi 性能指标的服务级别预期 (SLE) • 一键识别根本原因:使用瞻博网络的主动分析和关联引擎 (PACE) 主动识别并修复问题的根本原因 • 访客 Wi-Fi:提供可扩展的访客访问,并提供多种语言支持、可定制的品牌、社交登录以及外部门户/AAA/RADIUS 集成等选项 • AI-Native 无线电资源管理:优化无线电设置以确保性能,同时即时适应间歇性的外部干扰 • 实时用户状态信息:在事件发生时动态捕获数据包并回放以查看任何用户在任何时间点的状态 • 使用 WxLAN 进行简单的资源分配和 QoS:只需单击鼠标或通过预先分配的策略为 Wi-Fi 用户分配和确定网络资源的优先级
转换方案可以在一天之内进行PEG介导的转换和ATMT,而对于电穿孔和LiPofection,这两者都可以在半天内完成。但是,材料和设备设置部分中列出的缓冲区和材料的早期准备是必不可少的。要准备培养物,必须根据所选技术在3到5天之间生长真菌。菌丝体可以在3天后在液体培养中产生,但是对于孢子,必须在固体培养基上生长4-5天。转化后,必须将真菌种植2周,在此期间需要3个亚文化才能获得均应转化剂。全部,转换的时间表在3到4周之间。使用质粒PDHT/SK-CEP进行所有实验,为此,骨架是从Zhihua Zhou(addgene质粒#92126)获得的。7
摘要 植物原生质体是利用基因编辑对所需性状进行遗传操作的可靠实验系统。尽管如此,突变原生质体的选择和再生仍具有挑战性,而随后恢复成功编辑的植物是先进植物育种技术的一个重要瓶颈。为了缓解与原生质体转基因表达和原生质体再生相关的障碍,开发了一种新方法。结果表明,线性化 DNA 可以有效转染马铃薯原生质体,而来自各种植物的 UBIQUITIN10 启动子可以有效地指导转基因表达。此外,还对转染原生质体的卡那霉素抑制浓度进行了标准化,新霉素磷酸转移酶 2 ( NPT2 ) 基因可用作富集转染原生质体的有力选择标记。此外,BABYBOOM ( BBM ) 转录因子的瞬时表达促进了原生质体衍生愈伤组织的再生。总之,这些方法显著增加了对表现出高转基因表达的原生质体的筛选,从而显著提高了原生质体衍生愈伤组织中基因编辑事件的发生率,达到 95%。本研究开发的方法促进了四倍体马铃薯植物的基因编辑,并为多倍体生物中的复杂基因操作开辟了道路。
Red Hat是全球领先的企业开源软件解决方案提供商,采用社区动力的方法来提供可靠且高性能的Linux,混合云,容器和Kubernetes Technologies。红色帽子可帮助客户整合新的和现有的IT应用程序,开发云本地应用程序,标准化我们的行业领先操作系统,并自动化,安全和管理复杂的环境。屡获殊荣的支持,培训和咨询服务使红帽成为财富500强的值得信赖的顾问。作为云提供商,系统集成商,应用程序供应商,客户和开源社区的战略合作伙伴,Red Hat可以帮助组织为数字未来做准备。
数字人文学科是人文学科中一个不断发展的、跨学科的领域,采用基于计算机的方法。因此,该领域的研究是一项跨学科的努力,通常涉及人文学科和计算机科学的研究人员。这种合作影响了所应用的方法以及这些不同领域研究的基础和指导理论。这些影响需要根据不同人文学科的传统来解决。因此,该版本涉及所有采用数字方法的人文学科。数字人文研究进一步介绍了所有这些学科的出版物,探讨了数字研究在人文学科中应用的方法论和理论意义。该系列由 Silke Schwandt、Anne Baillot、Andreas Fickers、Tobias Hodel 和 Peter Stadler 编辑。
CRISPR-Cas 技术可以对植物基因组进行精确修改,有望彻底改变农业。这些技术依赖于将编辑组件递送到植物细胞中以及完全编辑的植物的再生。在无性繁殖植物(例如葡萄)中,原生质体培养是生产非嵌合和无转基因的基因组编辑植物的最佳途径之一。然而,原生质体再生植物的能力较差,阻碍了其在基因组编辑中的应用。在这里,我们报告了一种从多个葡萄品种的原生质体再生植物的有效方案。通过将原生质体封装在海藻酸钙珠中并与饲养层培养物共培养,原生质体分裂形成愈伤组织菌落,再生成胚胎并最终生成植物。该方案在酿酒葡萄和鲜食葡萄 (Vitis vinifera) 品种以及葡萄砧木和葡萄野生近缘种 Vitis arizonica 中均成功发挥作用。此外,通过用 CRISPR 质粒或核糖核蛋白 (RNP) 复合物转染原生质体,我们在三个品种和 V. arizonica 中再生了 VvPHYTOENE DESATURASE 基因经过编辑的白化植物。结果揭示了该平台在促进葡萄属物种基因组编辑方面的潜力。