过去几十年来,癌症生物学取得了巨大进步,阐明了与癌症有关的几条关键细胞通路,包括 Kirsten 大鼠肉瘤 2 病毒致癌基因同源物 (KRAS)、MYC 原癌基因 (MYC)、P53 和视网膜母细胞瘤 (RB),以及某些免疫检查点,如程序性细胞死亡蛋白 1 或其配体 (PD-(L)1) 检查点和肿瘤代谢通路,这些通路与 70% 以上的癌症发病率有关。然而,这些通路中许多已知靶点包括在肿瘤发生中发挥关键作用的蛋白酪氨酸磷酸酶 (PTP),如 Src 同源区 2 结构域磷酸酶 2 (SHP2) 和 GTP 酶,如 KRAS,直到最近才被认为是“无法用药的”,因为存在各种药物研发挑战。
一名 58 岁女性患者,主诉严重的髋部疼痛和进行性呼吸困难。她被诊断为 4 期非小细胞肺癌,伴有淋巴结和骨骼转移。髋部疼痛是由骨转移引起的,她接受了大剂量芬太尼和萘普生治疗。由于细菌性肺炎的发展,她的呼吸困难加重,她被转入重症监护室,在那里开始使用广谱抗生素和人工通气。由于患者有原癌基因酪氨酸蛋白激酶 1 重排,因此还开始使用靶向治疗克唑替尼治疗。一周内,呼吸困难减轻,对人工通气的需求也随之减轻。患者的髋部疼痛也大大减轻,因此可以减少大剂量的阿片类药物。转入重症监护室几天后,她身体状况良好出院。
摘要:胃癌是常见的恶性肿瘤,起源于胃黏膜上皮。研究表明,多种昆虫中含有的抗菌肽、斑蝥素等活性物质能发挥抗癌作用,与化疗药物相比,这些活性物质毒性小,副作用小。本文报道了第一个在丝腺中特异性高表达的家蚕羧肽酶抑制剂,该抑制剂通过促进原癌基因c-Myc的表达,抑制EGF/EGFR启动的MAPK/ERK通路,进而影响相关细胞周期蛋白的表达,从而显著抑制胃癌细胞的增殖。通过家蚕羧肽酶抑制剂与表皮生长因子受体的分子对接和虚拟筛选,鉴定出一个与现有该受体小分子抑制剂有重叠的多肽。本研究旨在探索家蚕羧肽酶抑制剂的药用潜力及应用,以促进从昆虫衍生物质开发抗肿瘤药物。
基因修饰或插入最初于 20 世纪 70 年代初提出作为治疗遗传性疾病的方法 [ 1 ]。造血干细胞 (HSC) 是基因治疗的首选目标,因为它们能够维持终生造血,从而能够持久缓解一系列疾病。目前,遗传性血液疾病的基因治疗方法主要包括从患有潜在遗传缺陷的个体中提取造血干细胞和祖细胞 (HSPC),并在体外进行基因修饰后进行过继转移(图 1 a)。数十年来在临床上进行的同种异体 HSPC 移植为这种新方法的治疗转化提供了路线图。在自体移植基因修饰的 HSPC 时,可以避免同种异体反应性并发症并降低预处理方案的复杂性,与同种异体 HSPC 移植相比,它们具有显著优势。使用基于 γ 逆转录病毒载体的基因递送载体的临床试验最初于 20 世纪 90 年代获得批准,但仅检测到少量校正细胞,并且未观察到潜在缺陷的表型校正。重新关注优化体外转导条件和增加预处理方案以利于转导细胞的植入,导致在原发性免疫缺陷患者中首次获得明确的临床成功[2-4]。然而,随后报告称接受治疗的患者中载体介导的原癌基因插入激活导致恶性肿瘤[5-7],这鼓励了主要基于 HIV-1 慢病毒亚家族逆转录病毒的替代载体设计的开发(图 1b)。慢病毒载体的独特成分促进其在非分裂的 HSPC 内的核易位,进一步增强这些细胞的转导。这些载体中 3′-LTR 启动子和增强子元件的消除也提供了一个关键的自失活 (SIN) 安全特性,以减轻对可能与内源性 HIV 颗粒重组或载体整合基因组位点附近原癌基因意外激活的担忧。然而,对于这些 SIN 载体,转基因表达的效率高度依赖于添加
具有毛状特征的高级别星形细胞瘤 (HGAP) 是中枢神经系统肿瘤分类分子和实践方法信息联盟 (cIMPACT-NOW) 1 在 2021 年世界卫生组织 (WHO) 分类中定义的一种新型实体,即表现出具有间变性特征的毛状细胞学、频繁的丝裂原活化蛋白激酶 (MAPK) 通路改变、细胞周期蛋白依赖性激酶抑制剂 2A/B (CDKN2A/B) 纯合缺失、以及 α-地中海贫血/智力迟钝综合征 X 连锁 (ATRX) 突变或缺失的星形细胞瘤。 1 HGAP 主要发生在小脑中,可从头发展或通过低度病变发展,通常伴有神经纤维瘤病 1 型 (NF1)、B-Raf 原癌基因 (BRAF) 或成纤维细胞生长因子受体 1 (FGFR1) 突变。其预后被认为介于毛细胞星形细胞瘤之间
染色体外DNA(ecDNA)是一种来源于染色体的癌症特异性环状DNA分子。与线性染色体相比,ecDNA表现出独特的结构,可以代表高染色体可及性,导致原癌基因过度活化和恶性行为。同时,ecDNA的非染色体遗传和复发性突变加剧了肿瘤的异质性和进化。最近的研究表明,ecDNA驱动肿瘤的发生和进展,并与广泛存在的癌症的不良临床结果和耐药性有关。尽管ecDNA于1965年首次被发现,但随着技术的进步,它在肿瘤发生中的关键功能正在显现出来。在这篇综述中,我们总结了目前对ecDNA在癌症中的起源、生物发生过程、发现历史、分子机制和生理功能的理解。此外,我们重点介绍了研究ecDNA的有效方法,并为ecDNA导向治疗提供了新的见解。
摘要:0.9% 至 2.6% 的非小细胞肺癌 (NSCLC) 患者发生 ROS 原癌基因 1 (ROS1) 重排,这使患者对特定的酪氨酸激酶抑制剂 (TKI) 治疗敏感。第一代 TKI 克唑替尼是首个获批用于 ROS1 阳性 NSCLC 一线治疗的靶向疗法。最近,多靶点抑制剂恩曲替尼获批用于初治患者,其抗 ROS1 活性比克唑替尼强 40 倍,且对中枢神经系统 (CNS) 的活性更强。在中位进展时间为 5.5 至 20 个月后,可能会出现耐药机制,导致肿瘤进展。因此,具有更强效力和脑渗透性的新一代 TKI 已经开发出来,目前正在研究中。本综述总结了目前对 ROS1 阳性 NSCLC 的临床病理特征及其治疗选择的认识。
目的:Pepinemab 是一种人源化 IgG4 单克隆抗体,靶向 SEMA4D (CD100) 抗原以抑制与其高亲和力受体 (plexin B1/PLXNB1、plexin B2/PLXNB2) 和低亲和力受体 (CD72) 的结合。在小鼠肿瘤模型中,SEMA4D 阻断可导致细胞毒性 T 细胞浸润增加、肿瘤生长延迟和持久的肿瘤排斥。在针对难治性肿瘤成人患者的临床研究中,Pepinemab 耐受性良好并改善了 T 细胞浸润。在骨肉瘤模型中,SEMA4D 被确定为强有力的候选原癌基因。基于这些临床前和临床数据,我们进行了 1/2 期研究,以确定 pepinemab 在复发/难治性实体瘤儿童患者中的推荐 2 期剂量 (RP2D)、药代动力学、药效学和免疫原性,以及在骨肉瘤中的活性。
40 多年前,人们在几种不同的人类癌症中发现并描述了 KRAS 原癌基因的激活突变,包括胰腺癌、结直肠癌以及非小细胞肺癌 (NSCLC)。大约 25% 至 30% 的肺腺癌存在 KRAS 体细胞变异,是 NSCLC 中最常见的基因组驱动事件。1 在 NSCLC 的 KRAS 变异中,大约 13% 的肺腺癌存在 KRAS p.G12C 单核苷酸突变(第 12 个密码子的甘氨酸替换为半胱氨酸)。KRAS 突变的 NSCLC 通常与吸烟(现在或以前吸烟)、肿瘤细胞上程序性死亡配体 1 (PD-L1) 表达增加、肿瘤突变负荷增加以及肿瘤浸润淋巴细胞计数增加有关。综合起来,与 KRAS 野生型疾病相比,这些因素肯定与免疫检查点抑制剂对 KRAS 突变 NSCLC(特别是 KRAS p.G12C 亚型)的显著疗效相关。1,2
摘要:KRAS 原癌基因是胰腺肿瘤发生的主要驱动因素,在胰腺导管腺癌 (PDAC) 中几乎普遍发生突变。超过 90% 的 PDAC 病例中检测到 KRAS 点突变,这些突变已被证明与较差的治疗反应和总体生存率有关。致病性 KRAS 突变大多局限于密码子 12、13 和 61,其中 G12D、G12V、G12R、Q61H 和 G13D 约占突变病例的 95%。新兴数据表明特定突变亚型以及 KRAS 变异等位基因频率对临床预后的重要性。此外,正在开发针对特定突变亚型的新技术和疗法,并取得了令人鼓舞的早期结果。在本文中,我们旨在回顾最近关于特定突变 KRAS 亚型对肿瘤学结果的相对影响、变异等位基因频率在下一代测序分析中的应用以及针对特定突变 KRAS 亚型的治疗方法的持续研究的研究。