在这样的高温1000 o C下,被困在石墨层之间的插入分解并迫使石墨层分开。膨胀过程会导致石墨晶体结构的破坏,体积(〜240 cc/g)的巨大增加,并且在厚度或C方向上的膨胀约为100倍。扩展的石墨看起来像纸的纸,似乎在边缘放在一起。膨胀石墨中石墨烯的薄片由弱的范德华力键合。
六角硼硝酸盐是一种具有出色特性的2D材料,例如较大的带隙,高热和化学稳定性,透明度以及高氧化和耐腐蚀性。这些特性使H-BN成为用于开发晚期涂料的合适候选者。然而,对于其他纳米材料,调整和控制H-BN的性质是将其应用于多个领域的基本关键。此处,当超声液化在不同溶剂(例如异丙醇(IPA),二恶英(DX),N-甲基吡咯酮(NMP)(NMP)和Dimethyl formamide(DMF)的不同溶剂中,H-BN的润湿性能被超声清液剥落。通过测量沉积在二氧化硅上的H-BN薄膜的水接触角(WCA)来确定不同H-BN材料的润湿特性。对于每个样品,观察到不同的接触角,不同的WCA值是通过仅通过在去角质过程中改变溶剂而获得的薄膜表面的结构和粗糙度的差异来解释的。这些表面特性通过视频和透射电子显微镜(TEM)以及原子力显微镜(AFM)表征。
Liu,J.,Notarianni,M.,Will,G.,Tiong,V.T.,Wang,H。,&Motta,N。(2013)。 用于电极膜的电化学去角质石墨烯:石墨烯薄片厚度对板电阻和电容性能的影响。 Langmuir,29(43),13307–13314。 https://doi.org/10.1021/la403159nLiu,J.,Notarianni,M.,Will,G.,Tiong,V.T.,Wang,H。,&Motta,N。(2013)。用于电极膜的电化学去角质石墨烯:石墨烯薄片厚度对板电阻和电容性能的影响。Langmuir,29(43),13307–13314。https://doi.org/10.1021/la403159n
摘要。在这项研究中,采用了一种便捷的策略,用于从聚苯乙烯(PST),聚氨酯(PU),聚(PMMA甲基丙烯酸甲酯)(PMMA)及其有机模型ED Zn Al LDH(分层双羟基)的有机模型(PMMA)合成衍生物(PMMA)(PMMA)(PMMA)。为此,首先,通过Zn-Al-ldH的阴离子交换反应对十二烷基磺酸钠(SDS)修饰LDH纳米颗粒。其次,从由9-十核1- ol组成的溶剂中获得PU宏引诱剂,并用于将苯乙烯单体与ORD PU-puco-pST共聚物共聚的控制移植共聚。然后,合成的puco-st被N-溴糖二酰亚胺(NBS)溴化以获得与溴基团的共聚物。在以下情况下,在存在溴化puco -st和cubr/bpy(2,2 0 -bipyridine催化剂的情况下,都可以制备(PMMA -G -PST- G -PU)Terpolymer。最后,(PMMA -G -PST -G -PU)/ZNAL LDH纳米复合材料通过溶液互化方法成功合成。fe-Sem图像显示,Zn-Al(SDS)和Zn-Al-LDH的表面形态导致片状和六边形形态。使用DSC和TGA对热性质进行研究表明(PMMA-G -PST-G -PU)/Zn-Al-LDH纳米复合材料与整洁的PU相比具有更高的热稳定性。合成的Terpolymer和(PMMA-G -PST-G -PU)/Zn-Al-LDH纳米复合材料由于其高LDH特性而被用作聚合物纳米复合材料的增强剂。©2024 Sharif技术大学。保留所有权利。
摘要。患者的糖尿病易于在口腔中增加细菌的增加,这可能会导致颊和牙龈粘膜细胞异常。本研究旨在通过使用GIEMSA染色和周期性酸SCHIFF(PAS)分析2型糖尿病的高血糖水平以及颊和牙龈细胞学细胞的状况。这项研究是对横截面方法的一项观察性研究,使用了16位糖尿病的受访者,其血糖水平为321.87±91.86 mg/dl。颊细胞的观察结果表明,有10人患有正常细胞(62.5%),而6人的损害较弱(37.5%)。牙龈细胞状况发现8人患有正常细胞(50%),6人的细胞损伤(37.5%)弱(37.5%),2人患有中等细胞损伤(12.5%)。PAS染色的上皮细胞的结果显示出10人(62.5%)的正常情况,在3人中略有损坏(18.8%),3人(18.8%)中等损坏。基于统计分析的结果,获得了血糖水平与牙龈和牙龈粘膜异常之间没有显着关系,p值= 0.105(Buccal),p值= 0.151(牙龈)(牙龈)(牙龈)(牙龈),但在PAS(p-value = 0.048)的上皮细胞中的血糖水平= 0.151(牙龈)(牙龈)(牙龈)(牙龈),但具有显着的关系。将来可以进行前瞻性和比较研究,以观察糖尿病患者(DM)患者的PAS染色的发展。这可以帮助探索与血糖控制有关的波动变化
但是,当将AU的其他层插入结构中时,会出现平面外AU-AU相互作用。超出了三层AU配置,对于中间的AU层,平面外AU-AU相互作用发生而无需直接键入Ti。这对粘结产生了积极影响,如图2C,其中综合部分晶体轨道汉密尔顿人口(IPCOHP)随着其他AU层而增加。分析图2D表明,Ti-AU相互作用也受益于多个AU层的存在。图2D进一步证明,Ti 4 Au 3 C 3中的三层AU提供了最大的个人贡献。这是通过图中所示的键长2e,其中Ti-au和au-au键(与Ti层相邻)对于Ti 4 Au 3 C 3最短,表明
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aenm.202202906。本文受版权保护。保留所有权利。
大规模石墨烯的生产具有显着的商业价值,并且在各种领域广泛使用。获得石墨烯的石墨的去角质可以以非常低的成本实现大规模生产,从而使其成为当前可用的最有前途的方法之一。本文回顾了不同类型的机械剥落。对去角质机制的深入了解可以为优化高质量石墨烯去角质技术提供有效的指导。近年来,我们已经收集并分析了石墨烯生产的机械剥落方面的最新进步,例如广泛使用的超声波剥落方法,使用流体动力学来剥落的超声波磨碎方法,甲基化方法以及创新的超临界剥落方法。在方面,我们期待如何利用机械去角质技术获得高级