微污染物的去除效率在不同的有氧废水处理厂有很大变化,从而导致其在地表和地下水中经常检测。季节性温度变化是影响植物性能的主要因素,但目前尚不清楚温度变化的延长时期如何影响微生物组和微污染物生物转化。这项工作研究了活性污泥系统中长期温度变化对微生物动力学的影响,以及对微污染物生物转化的影响。测序批次反应器用作模型系统,研究了4 - 40℃的温度范围。16S rRNA扩增子测序表明,温度驱动微生物结构(GDNA)和活性(RNA),而不是时间,并且在15°C低于15℃和高于25℃的情况下,微生物群落在20℃时具有最丰富,更多样化,而在急剧和更具体的分类中则占优势,并且更具体的分类占高度的高度,以更高的时间高度高度的温度,并且占优势。这表明较少的分类单元可能负责在极端温度下维持活化污泥中的生物转化能力。微施加剂生物转化速率主要偏离15℃以下的经典Arrhenius模型,高于25℃,这表明长期暴露于温度变化会导致温度引起的分类转移,从而导致不同的生物转化途径超过不同温度范围的不同集合。
微塑料,即直径小于 5 毫米的塑料颗粒,是一种无处不在的污染物,从人类母乳到南极雪中随处可见。Fengqi You 和同事使用一系列工具来识别能够捕获和容纳微塑料的肽,这些肽可用于去除各种环境中的微小颗粒。
在这里,我们关注的是四个基于海洋的CDR,我们认为,这不仅是由科学家提倡的,而且在许多情况下也是由私人Sector提倡的,而无需对基础的典型科学进行尽职调查。我们认为这些方法的支持者不仅要对海洋碳循环的运作方式不完整或不正确,而且还具有提供重大气候益处所需的上规模。这样的升级将其他海洋过程带入发挥作用,这可能无效拟议的CDR方法的有效性。在每种情况下,错误理解和知识差距都会影响碳偏移方案的信用性。我们的案例研究是:基于钙化的方法,海草种植的扩展,沿海蓝色碳修复和“重新野生”鲸鱼种群。我们认为,所有这些行动的非气候益处都大大超过了它们对基于海洋的CDR的适度(或不存在)可能的贡献。
固定图案噪声(FPN)是由于成像传感器的反应中的不均匀性而在视频上存在的时间相干噪声。对于红外视频来说,这是一个常见的问题,它降低了观察者的质量并阻碍了随后的应用程序。在这项工作中,我们引入了FPN删除问题的概括,其中输入数据由具有相同FPN的几个不同序列组成。这是由红外摄像机通过镜子或相机本身(例如用于监视的镜子本身)捕获多个传感器的红外摄像机的动机。与从单个视图中的标准FPN删除问题相比,该多视图设置为FPN进行了更准确的估计。我们提出了一种新型的能量最小化,以进行多视图FPN去除,并提出了可以以离线和线路方式应用的两种优化算法。此外,我们还表明,提出的能量可以适应从单个视图中删除FPN的问题,并具有滚动窗口的方法,从而对最终的状态进行了显着改进。我们通过合成数据和来自监视红外摄像机的真实数据证明了所提出的方法的性能。
通过将聚合物掺入LDH纳米粒子中,可以获得具有独特功能和结构的聚合物基纳米复合膜,其可以通过逐层自组装方法定义为溶液插层、熔融插层或乳液插层(12,13)。在药物输送领域,无机材料的使用可能会产生有害的副产物并影响环境。相反,使用天然物质和绿色合成方法可以最大限度地减少能源消耗和污染物的产生,并改善人类健康(14,15)。因此,结构上由几种有机大分子(如碳水化合物、蛋白质、核酸和脂肪酸)组成的天然物质(如蜂蜜)引起了人们的兴趣(16,17)。天然基纳米复合材料通常被认为是无毒和生物相容性的,具有高化学稳定性和pH依赖性的溶解度(12,18)。它们通过廉价的工艺制备而成,并且可以轻松修改为具有独特的物理化学性质,以用于环境科学、催化、生物传感、化妆品和医学等不同应用(10、19)。尽管转换为生物来源可能会解决许多重大问题,但活性成分在储存过程中可能通过水解或氧化而快速降解,并且由于释放曲线受限导致治疗反应不足,因此凸显了使用生物来源的必要性
摘要 水中新兴污染物的增多对科学界和水处理利益相关者提出了挑战,要求他们设计出简单、实用、廉价、有效且环保的修复技术。新兴污染物包括抗生素、激素、非法药物、内分泌干扰物、化妆品、个人护理产品、杀虫剂、表面活性剂、工业产品、微塑料、纳米颗粒和纳米材料。去除这些污染物并不容易,因为传统的废水处理系统并非为处理新兴污染物而设计的,而且污染物通常以痕量形式存在于复杂的有机矿物混合物中。在这里,我们回顾了去除废水中新兴污染物的先进处理方法,重点关注使用非常规吸附剂(如环糊精聚合物、金属有机骨架、分子印迹聚合物、壳聚糖和纳米纤维素)的吸附导向工艺。我们描述了用于降解和去除新兴污染物的生物技术。然后,我们提出高级氧化过程由于其简单性和效率而作为最有前景的策略。
在1993年,日本研究人员首先报道了患有临床和生物化学疾病的成年患者,类似于尿素周期酶Argininoscinate合成酶1的缺陷引起的经典柑橘类血症1型,但在相应的ASS1基因中缺乏遗传变异。1同一位作者报道了这种情况,称为Citrullinemia类型2或CTLN2,其特征是肝氨基辛酸核酸酯合成酶1(ASS1)的降低,具有正常的动力学特性和热稳定性,伴随着接近正常水平的Ass1 mRNA肝脏中的肝脏中的肝脏1 mRNA,肝脏中的正常水平,正常的翻译活动,没有正常的翻译结构,没有毛的结构效果。1最后,Kobayashi等。将CTLN2的原则确定为不是源自ASS1基因座的,并成功地克隆了因子基因SLC25A13,为2,它们指定为“ Citrin一词”。”基于这种历史的观点,现在被称为由SLC25A13突变引起的常染色体隐性疾病β-氧化,三羧酸(TCA)周期和尿素周期。The disease is characterized by age- dependent, variable clinical manifestations: neonatal intrahepatic cholestasis caused by citrin deficiency (NICCD; OMIM 605814), failure to thrive and dyslipide- mia caused by citrin deficiency (FTTDCD), and adult- onset type II citrullinemia (CTLN2; OMIM 603471).3 - 5
目前使用各种方法来量化与增强风化(EW)相关的二氧化碳去除(CDR),该方法涉及修改硅酸盐矿物质压碎的土壤。我们的目的是通过补充最近发表的土壤柱实验的结果来为CDR定量的标准化程序做出贡献,其中将压碎的橄榄石,氧化球和albite添加到土壤中,并在土壤中添加了总融合ICP-OES分析碱基阳离子浓度。CDR仅与基于渗滤液的总碱度测量值相当,校正了保留在土壤剖面中的风化产物后,我们将其定义为智障分数。智障分数占风化阳离子的92.7–98.3%,表明至少在我们的短期研究(64天)中,大多数风化产物保留在土壤中。进一步研究了智障风化产物的命运表明,以碳酸盐矿物质(最高34.0%)沉淀或吸附到反应性表面,例如土壤有机物和粘土矿物(最高32.5%)。因此,由于强烈的吸附和/或进一步的矿物降水反应(31.6–92.7%),可能会保留大部分风化产品,这可能对整个时间的CDR进行量化具有潜在的重要意义。我们得出的结论是,基于土壤的质量平衡方法可用于量化风化速率,并可以推断潜在的CDR。但是,仅在考虑到智障分数后才能限制在给定时间和深度间隔内实现的实际CDR。
通过湿过程生产磷酸,其中磷酸盐被矿物酸溶解,经常提供不可避免地包含几种杂质的产物。其中一些元素不利于酸在肥料或食品工业中的最终用途。在这些杂质中,人们可以找到镉的最终含量在肥料中的最终含量取决于原材料的类型和化学合成途径。因此,必须纯化湿磷酸(WPA)。本综述比较并分析了从WPA中去除镉的不同工业过程,从溶剂提取开始,这始终是该领域最广泛使用的技术,但是降水量,离子交换,吸附,浮选,甚至是最近可能成为相关替代方案的最新膜过程。比较了镉去除技术的效率,并讨论了它们的优势和局限性。本综述还提供了有关H 3 PO 4 /H 2 O系统的热力学建模的见解,并比较了当前模型预测热力学特性的能力,包括渗透系数和物种,以广泛的磷酸浓度。此外,还使用生命周期评估和可用成本数据来评估WPA产生的成本和环境影响,这表明热磷酸在经济和环境上仍然比纯化的WPA更繁重。
未来几十年的净排放目标要求开发新的温室气体(GHGR)技术,并扩展到最高10 GTCO 2 E/YR。到2050年。由于GHGR技术的跨学科性和新颖性,GHGR研究面临着将技术学科调整到新领域的挑战,并通过确定和解决关键问题所需的知识来广泛地增强研究人员的能力。这种观点讨论了生物技术可以在多种GHGR技术以及限制进步的常见研究,社区和知识差距中扮演的重要但持续不断的角色。焦点的GHGR技术是(1)酶碳酸酐酶在直接空气捕获中催化CO 2交换的潜力; (2)微生物对加速土壤或基于反应堆的增强岩石风化的潜在效用; (3)通过增强的甲烷营养或生物反应器来氧化甲烷以氧化甲烷,从而氧化甲烷,以使甲烷氧化以氧化。对这些GHGR方法的研究进度受到缺乏跨学科研究社区发展以及知识差距的强烈限制。有必要清楚且可访问的可行问题,理想情况下,将其与容忍度的资金机会配对,作为招募和赋予相关研究人员的工具,以使这些不足的技术领域为这些领域。