Product Specifications EDU sized for 3 crew, 6 mT hardware, 5 yrs U.S. SI Performance Air Flow Rate 10-15 CFM CO 2 Scrubbing Capacity ~6 kg/day @ 13 CFM and 5,000 ppm CO 2 input Bed Heater Operation, Maximum Temperature 450 °F 230 °C Mechanical Mass 410 lbm 186 kg Volume 12 ft 3 0.35 m 3 Electrical Steady State Power (Nominal) 530 Watts @ 28 VDC电压范围22-32 VDC环境振动12 GRMS外部工作温度范围40至120°F 4至49°C注意:此数据仅用于信息,并且可能会更改。联系Sierra空间以获取设计数据。
自1977年以来,能源与环境政策研究中心(CEEPR)一直是麻省理工学院能源和环境政策研究的重点。CEEPR促进了严格的,客观的研究,以改善政府和私营部门的决策,并通过与全球各地的行业合作伙伴的密切合作来确保其工作的相关性。利用麻省理工学院可用的无与伦比的资源,附属教师和研究人员以及国际研究协会,为与能源供应,能源需求和环境有关的广泛政策问题的实证研究做出了贡献。这些研究工作的重要传播渠道是MIT CEEPR工作文件系列。CEEPR发布了由麻省理工学院和其他学术机构的研究人员撰写的工作论文,以便及时考虑和反应能源和环境政策研究,但在发布之前不进行选择过程或同行评审。CEEPR的发布论文的发布并不构成对工作文件的准确性或优点的认可。如果您对特定工作文件有疑问,请联系作者或其家庭机构。
Acknowledgement: Thank you for our research partners, Yimin Zhang, Greg Avery, Ed Wolfrum, Dayo Akindipe, and Darren Peterson at National Renewable Energy Laboratory and Wenqin Li, Mengyao Yuan, Alvina Aui, Aaron Chew, and Allegra Mayer at Lawrence Livermore National Laboratory.感谢我们在Mote,Carba,Charm,Arbor Energy,Isometric,Stripe,Kodama和Carbon Conbon Connionment Laboratory的行业合作伙伴。该项目由DOE技术过渡办公室(OTT)与清洁能源示范办公室(OCED)合作,化石能源和碳管理办公室(FECM),能源效率和可再生能源办公室(EERE)以及Bioenergy技术办公室以及Bioenergy技术办公室(Beto)。能源部技术过渡部(OTT)是联邦政府最大的技术商业化支持者之一。成立于2015年,Ott Bolsters技术行业的市场技能,使清洁能源技术能够通过研究,开发,演示和部署到私营部门来实现我们国家的气候目标。访问我们的Energy.gov/technology Transitions了解更多信息,并订阅通过电子邮件获得我们最新的机会和成就。在Twitter和LinkedIn上关注我们。BICRS MMRV项目OTT计划经理:kyle.fricker@hq.doe.gov ott的通讯经理:( Sean.sullivan@hq.doe.gov)也由Grantham Foundation提供了资金。BICRS MMRV项目OTT计划经理:kyle.fricker@hq.doe.gov ott的通讯经理:( Sean.sullivan@hq.doe.gov)也由Grantham Foundation提供了资金。
废物能源化 (EfW) 是一种废物管理方法,将社会卫生服务与能源和热能回收相结合。EfW 工艺安全地燃烧残余废物并产生电能和热能。EfW 设施可以结合点源碳捕集技术,从废物燃烧产生的烟气中去除二氧化碳 (CO₂),从而将二氧化碳浓缩并输送至下游进行长期封存,例如通过封存在地质构造中。目前,作为 EfW 工艺输入的废物中化石碳和生物碳的比例约为 50/50。生物碳来自废物流中的生物质,是生物圈自然碳循环的一部分。如果没有 EfW 工艺,这些生物质会发生生物降解,将生物碳释放到大气中。在 EfW 设施中使用碳捕集与封存 (CCS) 技术,可以将生物碳从生物圈碳循环中永久移除,从而产生大气负排放,并由此产生二氧化碳移除 (CDR) 信用额。 EfW 不仅可作为 CDR 途径发挥作用,还具有许多共同优势,包括:
储存、储存介质、减缓潜力、成本、协同效益、影响和风险以及治理要求(高信度)。具体而言,成熟度范围从较低成熟度(例如海洋碱化)到较高成熟度(例如重新造林);清除和储存潜力范围从较低潜力(<1 GtCO 2 yr –1,例如蓝碳管理)到较高潜力(>3 GtCO 2 yr –1,例如农林业);成本范围从较低成本(例如土壤碳封存每吨二氧化碳 45-100 美元)到较高成本(例如 DACCS 每吨二氧化碳 100-300 美元)(中等信度)。对于将碳储存在植被中和通过土壤碳管理的方法,估计的储存时间尺度从几十年到几个世纪不等,对于将碳储存在地质构造中的方法,则为 10,000 年或更长时间(高信度)。• 从大气中去除二氧化碳的过程分为以下几类
水对于所有人类活动都是必不可少的。鉴于到2025年,预计世界一半的人口实际上将生活在水力压力的地区,因此水需求已被强调为新世纪最显着的挑战之一(Mekonnen&Hoekstra 2016)。在家庭,工业和农业领域生产的废水与全球人口同时增加。淡水供应没有续签以满足不断增长的人口的需求,该人口会导致竞争竞争,并且在许多不同部门中(Obotey Ezugbe&Rathilal 2020)中有限的淡水资源分布不均匀。水质差和与水有关的疾病也将对人类健康产生严重影响。由于快速的工业化和发展,进入淡水来源的污染物数量正在增加(Hebbar等人。2016)。因此,全世界的许多人,尤其是在发展中国家,缺乏清洁饮用水,国际社会目前正在研究所有实用的解决方案,以减少过度使用有限的淡水资源(Obotey Ezugbe&Rathilal 2020)。重金属或有毒金属是痕量金属,对人类健康有害并且至少有五次水的密度。重金属通常会通过吸入,摄取和吸收在通过空气,饮用水,食物或多种化学物质和人造产品中释放到环境后,通过吸入,摄取和吸收将其吸收到体内。2021)。重金属基本上积聚在生物体中,因为它们不能被生物降解,并且大多数重金属离子被认为是有毒的。世界卫生组织(WHO)设定了标准,以最大的可接受饮用水和工业废水中某些有害重金属的可接受限制,以及超过这些限制的健康影响(Shrestha等人
•原料来自多个来源。按照EBC指南为正列表1,原料的62%是废木,例如托盘研磨,衬里和木屑。10%是农业废物,为0.3%是食品加工残留物,弗雷斯(Freres)自己的业务中的28%林业残留物(树皮)。有关详细的原料分析,请参见第4章。没有可用于建筑用途的木材品质被用作原料。(§1.1.2-4)•该设施没有EBC证书。在本报告中概述了对可比条件的遵守,并且在LCA中计算了所有过程排放。使用摇篮方法,已经考虑了以下排放:收获,运输和打磨原料,桩排放,堆栈排放,运输和处理生物炭的运输和处理。
设计的纳米材料已成为一种有前途的水处理技术,特别是用于去除重金属。它们独特的物理化学特性,即使在低浓度下,它们也可以吸附大量金属。本评论探讨了各种纳米材料的效率,包括在不同条件下从水中去除沉重的金属,包括沸石,聚合物,壳聚糖,金属氧化物和金属。纳米材料的功能化是增强其分离,稳定性和吸附能力的策略。 实验参数,例如pH,吸附剂量,温度,接触时间和离子强度显着影响吸附过程。 相比,工程的纳米材料显示出对重金属修复的希望,但存在一些挑战,包括聚集,稳定性,机械强度,长期性能和可伸缩性。 此外,纳米材料的潜在环境和健康影响需要仔细考虑。 未来的研究应着重于应对这些挑战并制定可持续的基于纳米材料的补救策略。 这将涉及跨学科的合作,遵守绿色化学原则以及全面的风险评估,以确保在实验室和大规模水平的重金属修复中安全有效地部署纳米材料。纳米材料的功能化是增强其分离,稳定性和吸附能力的策略。实验参数,例如pH,吸附剂量,温度,接触时间和离子强度显着影响吸附过程。相比,工程的纳米材料显示出对重金属修复的希望,但存在一些挑战,包括聚集,稳定性,机械强度,长期性能和可伸缩性。此外,纳米材料的潜在环境和健康影响需要仔细考虑。未来的研究应着重于应对这些挑战并制定可持续的基于纳米材料的补救策略。这将涉及跨学科的合作,遵守绿色化学原则以及全面的风险评估,以确保在实验室和大规模水平的重金属修复中安全有效地部署纳米材料。