cow-pea(Vigna unguiculata)是豆科植物的主食,遍布撒哈拉以南非洲和其他热带和亚热带地区。考虑到预计的气候变化和全球人口增加,Cowpea对炎热气候的适应,对干旱的抵抗力以及固氮功能使其成为面临未来挑战的特别有吸引力的农作物。尽管有这些有益的特征,但由于其对转变和较长的再生时间的重现,cow豆的有效品种的改善在cow豆方面具有挑战性。瞬态基因分析分析可以提供解决方案来减轻这些问题,因为它们允许研究人员在投资时间和资源密集型转型过程之前测试基因编辑结构。在这项研究中,我们开发了一种改进的cow豆原生质体隔离原质量,一种瞬态原生质体测定和一种农业透明测定法,用于初始测试和验证基因编辑构建体和基因表达研究。为了测试这些促销,我们评估了使用聚乙烯糖(PEG)介导的透明二糖(PEG)介导的二苯乙烯(PEG)介导的CRISPR-CAS9构建体的疗效,该序列用拟苯乙烯溶剂酶(PDS)作为靶基因,并用聚乙烯介导的透射率(PEG)介导的透射率。sanger测序从转化的原生质体和农业灌注的cow豆叶子对DNA进行了测序,在目标序列中显示出几个大的缺失。本研究中开发的原生质体系统和农业过滤协议提供了多功能工具来测试基因编辑组合,然后启动植物转化,从而提高了使用活性SGRNA并获得所需的编辑和目标表型的机会。
摘要 海洋生态系统富含“omega-3”长链(C 20-24)多不饱和脂肪酸 (LC-PUFA)。人们历来认为,这些脂肪酸的产生主要来自海洋微生物。最近,这一长期存在的教条受到了挑战,因为人们发现,许多无脊椎动物(大多生活在水中)都具有从头合成多不饱和脂肪酸 (PUFA) 和从中合成 LC-PUFA 所必需的酶机制。关键突破是在这些动物中检测到了称为“甲基末端去饱和酶”的酶,这种酶能够实现 PUFA 的从头合成。此外,在几种非脊椎动物门中,还发现了在 LC-PUFA 生物合成中起关键作用的其他酶,包括前端去饱和酶和极长链脂肪酸蛋白的延长。本综述全面概述了这些基因/蛋白质家族在水生动物(尤其是无脊椎动物和鱼类)中的补充和功能。因此,我们扩展并重新定义了我们之前对脊索动物中存在的 LC-PUFA 生物合成酶的修订,并将其应用于整个动物,讨论了关键的基因组事件如何决定不同分类群中去饱和酶和延长酶基因的多样性和分布。我们得出结论,无脊椎动物和鱼类都表现出活跃但明显不同的 LC-PUFA 生物合成基因网络,这是由复杂的进化路径与功能多样化和可塑性相结合的结果。关键词水生生态系统、生物合成、极长链脂肪酸蛋白的延长、前端去饱和酶、长链多不饱和脂肪酸、甲基端去饱和酶、ω-3
与功能基因组学研究结合的大规模DNA测序在表征癌症基因组方面起着关键作用,揭示了缺失事件的重要性,这些事件的重要性通过肿瘤抑制基因的丧失来促进肿瘤生长。诸如癌症基因组图集计划(TCGA)之类的倡议提供了整个人类癌症遗传改变的综合图,表明缺失事件通常延伸到肿瘤抑制基因基因座,从而导致相邻基因的代码。尽管这些乘客事件可能不会赋予肿瘤的直接健身优势,但它们可以创建可以通过治疗剥削的副脆弱性。一个例子是由甲基腺苷磷酸化酶(MTAP)丧失赋予PRMT5抑制作用的附带脆弱性,该基因经常与描述良好的肿瘤抑制基因CDKN2A相关。1-3 MTAP编码蛋白质MTAP,蛋白MTAP是蛋氨酸拯救途径中的临界酶,该过程从多胺合成的副产物中循环蛋氨酸,甲基噻吩腺苷(MTA)。CDKN2A的丧失发生在所有人类癌症中的10-15%中,并且在组织学上的频率更高,例如恶性周围神经鞘肿瘤,胶质母细胞瘤(GBM),间皮瘤,间皮瘤,尿路上皮癌,食管鳞状细胞癌,胰腺癌,胰腺腺瘤腺瘤,<- <- <-
在新型植物育种技术 (NPBT) 中,CRISPR/Cas9 系统是用于靶基因编辑的有用工具,可快速改良植物的性状。该技术允许同时靶向一个或多个序列,以及通过同源定向重组引入新的遗传变异。然而,CRISPR/Cas9 技术对于某些多倍体木本植物来说仍然是一个挑战,因为必须同时靶向需要突变的所有不同等位基因。在这项工作中,我们描述了改进的方案,使用农杆菌介导的转化将 CRISPR/Cas9 系统应用于高丛蓝莓 (Vaccinium corymbosum L.)。作为概念验证,我们靶向编码八氢番茄红素去饱和酶的基因,该基因的突变会破坏叶绿素的生物合成,从而可以直观评估敲除效率。离体培养的蓝莓 cv. 的叶片外植体。 Berkeley 已用 CRISPR/Cas9 构建体进行转化,该构建体包含两个针对 pds 两个保守基因区域的向导 RNA(gRNA1 和 gRNA2),随后在富含卡那霉素的选择培养基中维持。在选择培养基中培养 4 周后,分离出卡那霉素抗性株系,并通过 Sanger 测序对这些株系进行基因分型,结果显示基因编辑成功。一些突变株系包括白化表型,即使两种 gRNA 的编辑效率都很低,gRNA1 的编辑效率在 2.1% 到 9.6% 之间,gRNA2 的编辑效率在 3.0% 到 23.8% 之间。这里我们展示了一种非常有效的高丛蓝莓商业品种“伯克利”的不定芽再生协议,以及在 Vaccinium corymbosum L. 中使用 CRISPR/Cas9 系统的进一步改进,为通过生物技术方法介导的育种开辟了道路。
结果和讨论:在总共617个共培养Calli中,21(3.4%)再生芽表现出三种不同的表型:白化,嵌合和浅绿色;与野生型非转化的再生芽相比。在白化芽中,总叶绿素含量大大降低,并且在嵌合芽中显着降低。在六个CAS9基因确认的再生芽中,两种芽表现出由于插入/缺失(Indels)和ACPDS靶点位置和周围的基于替代的突变而引起的白化表型。深度扩增子测序显示两个SGRNA之间的indel频率显着,范围从1.2%到63.4%,以及53.4%的替代频率。ACPDS基因的突变产生了可检测到的白化病表型,因此确定了ACPDS基因的成功编辑。这是第一次在洋葱中成功建立了CRISPR/CAS9介导的基因组编辑方案,而ACPD基因作为一个例子。这项研究将为研究人员提供进一步的洋葱基础研究和应用研究的必要动力。
亲爱的编辑部 芹菜 ( Apium graveolens L.) 是伞形科的一种具有重要经济价值的叶菜作物,在世界各地广泛种植 [1]。生产上需要通过传统或现代分子遗传改良手段对芹菜进行品质、抗病虫害和晚抽薹等改良。常规育种遗传改良受限于育种周期长、随机性,因此基因工程育种的必要性凸显。精准的基因组编辑技术有可能突破常规育种的局限性。另外,芹菜功能基因组学的研究也对基因组编辑技术的发展提出了更高的要求。相对于其他主要作物,遗传转化体系不成熟和基因编辑技术不够发达已成为芹菜基础研究和遗传改良的瓶颈。 CRISPR/Cas9 系统是一种 RNA 引导的基因组编辑工具,由 Cas9 核酸酶和单向导 RNA(sgRNA)组成,可实现高效的靶向修饰[2,3]。由于其高效性和准确性,CRISPR/Cas9 诱导的基因组编辑已广泛应用于多种植物物种,以改善植物抗性和产量,并研究基因在控制农艺性状中的作用[2-4]。本文首次报道成功建立基于 CRISPR/Cas9 的基因组编辑系统,并通过在芹菜品种‘晋南诗芹’中靶向敲除八氢番茄红素去饱和酶基因(AgPDS)来验证该系统的有效性。 PDS 是类胡萝卜素生物合成中的一种限速酶,它催化无色八氢番茄红素转化为ζ-胡萝卜素,ζ-胡萝卜素进一步转化为番茄红素。它通常用作视觉标记来检测
在花生中,使用子叶节外植体在 cv. ICGV 15083 中进行农杆菌介导的转化。总共 250 个外植体与 CRISPR/Cas9 构建体共培养,结果 80 个外植体在芽起始培养基下 30-40 天内产生多个芽。分离产生多个芽的外植体,并在芽伸长培养基中每 10-15 天进行一次卡那霉素选择(125 mg/L)继代培养。总共 70 个芽用 Cas9 和 NptII 基因特异性引物进行测试。其中,50 个(约 70%)对 Cas9 和 NptII 基因均呈阳性(图 3)。在这个组中,25 个芽(约 25%)表现出不同程度的白化表型(图 4,表 2)。白化芽在再生后三个月内无法存活。一些
图 1 植物中脂肪酸和三酰甘油合成途径的示意图。虚线显示三酰甘油合成中脂肪酸的流动。ACC,乙酰辅酶 A 羧化酶;ACP,酰基载体蛋白;CoA,辅酶 A;DGAT,二酰甘油酰基转移酶;FAB2,脂肪酸生物合成 2;FAD2,脂肪酸去饱和酶 2;FAD3,脂肪酸去饱和酶 3;FAE1,脂肪酸延长酶 1;FATA,脂肪酰基-ACP 硫酯酶 A;FATB,脂肪酰基-ACP 硫酯酶 B;KAS,β-酮酰基-酰基载体蛋白合酶;LMAT,丙二酰辅酶 A/ACP;PC,磷脂酰胆碱; PDCT,磷脂酰胆碱:二酰甘油胆碱磷酸转移酶。
摘要 提出了一种用于快速检测IGBT去饱和短路的自适应消隐时间(SABT)电路。在IGBT正常开通或发生负载故障(FUL)时,通过检测IGBT集电极-发射极电压V CE 的变化来实现消隐时间的确定;而当IGBT发生硬开关故障(HSF)时,通过检测栅极电压V GE 来确定消隐时间。利用UMC 0.6μm 700V工艺进行仿真表明,提出的SABT电路能够快速检测FUL和HSF。与传统消隐时间电路相比,SABT电路可以将FUL的故障检测时间从1.3μs缩短到35.5ns,而HSF条件下的故障检测时间从2.329μs缩短到294ns。 关键词:消隐时间,IGBT,去饱和短路保护 分类:功率器件与电路
内质网相关油酸去饱和酶 FAD2 是植物非光合作用组织中产生亚油酸的关键酶。在大豆中,已报道两种不同的 FAD2 同工酶:一种组成性表达基因,称为 FAD2-2 ,另一种种子特异性基因,称为 FAD2-1 。FAD2-1 的两种种子特异性同工酶,称为 FAD2-1A 和 FAD2-1B ,仅在 24 个氨基酸残基处不同(Tang 等人,2005 年),在确定种子储存油的脂肪酸组成方面起着关键作用(Heppard 等人,1996 年;Kinney,1997 年)。与 GmFAD2-1 成员不同,GmFAD2-2 成员表现出细胞质定位,这可能表明大豆中存在一种替代的脂肪酸去饱和酶途径,用于转化油酸含量,而不会显著改变传统的质体/内质网脂肪酸生产(Lakhssassi 等人,2021 年)。