1 波兰科学院 Nencki 实验生物学研究所细胞信号传导和代谢紊乱实验室,02-093 华沙,波兰;a.dobosz@nencki.edu.pl (AMD);j.janikiewicz@nencki.edu.pl (JJ);a.dziewulska@nencki.edu.pl (AD) 2 波兰科学院核物理研究所跨学科研究部,31-342 克拉科夫,波兰;anna.maria.borkowska@uj.edu.pl (AMB);Ewelina.Lipiec@ifj.edu.pl (EL); Wojciech.Kwiatek@ifj.edu.pl (WMK) 3 波兰克拉科夫雅盖隆大学物理、天文与应用计算机科学学院,30-348 4 波兰科学院 Nencki 实验生物学研究所分子医学生物化学实验室,02-093 华沙,波兰;p.dobrzyn@nencki.edu.pl * 通讯地址:a.dobrzyn@nencki.edu.pl © 检查 ^ x 更新
摘要 本研究旨在设计计算机引导RNA(sgRNA),用于CRISPR/Cas9介导的红薯(Ipomoea batatas L.)八氢番茄红素脱氢酶(PDS)基因敲除。IbPDS基因编码区序列长1791个碱基对(bp),相当于572个氨基酸。将IbPDS基因的氨基酸序列与其他邻近植物物种的同源序列进行比较,结果显示,它与Ipomoea triloba和Ipomoea nil的PDS相似性很高,分别为98.60%和97.73%。 CRISPR RGEN Tools 为 IbPDS 基因提供了 113 个结果,筛选出 24 个,并选择了三个 sgRNA 序列用于设计基因编辑载体,它们是 sgRNA 1 (5'-AC- CTCATCAGTCACCCTGTCNGG-3')、sgRNA 2 (5'- CCTCCAGCAGCAGTATTGGTTGGTTTGNGG -3') 和 sgRNA 3 (5'- CTGAACTCTCCTGGTTGGTTGTTNGG -3')。所选 sgRNA 的预测二级结构为靶基因的基因编辑提供了有效的 sgRNA 结构。用于 CRISPR/Cas9 介导的 IbPDS 基因敲除的 PMH-Cas9- 3xsgRNA 载体是使用三个 sgRNA 序列和一个潮霉素抗性标记在计算机上设计的。
野生种田芥(Lepidium campestre)有潜力成为适合北欧气候的新型覆盖作物和油籽作物。然而,由于多不饱和脂肪酸 (PUFA) 和芥酸 (C22:1) 含量高,其种子油目前不适合大多数食品、饲料和工业应用。由于这些不良脂肪酸的生物合成受一些众所周知的主要显性基因控制,因此使用 CRISPR/Cas9 敲除这些基因将更有效地提高种子油的质量。为了提高所需油酸 (C18:1) 的含量,并降低 PUFA 和 C22:1 的含量,我们利用基于原生质体的 CRISPR/Cas9 基因敲除系统,针对三个重要基因脂肪酸延长酶 1 ( FAE1 )、脂肪酸去饱和酶 2 ( FAD2 ) 和还原油酸去饱和酶 1 (ROD1 )。通过敲除 FAE1 ,我们获得了一个几乎没有 C22:1 的突变株系,但 C18:1 增加到 30%,而野生型为 13%。敲除 ROD1 导致 C18:1 增加到 23%,PUFA 含量中等但显著降低。 FAD2 的敲除与杂合 FAE1fae1 基因型相结合,产生了突变株系,其 C18:1 含量高达 66%,PUFA 含量极低,C22:1 显著降低。我们的研究结果清楚地表明,CRISPR/Cas9 具有快速改良水芹性状的潜力,这将加快其驯化过程。本研究产生的突变株系可用于进一步育种,以将水芹培育成可行的作物。
已知处女雌蛾会释放性信息素来吸引同类雄性。准确的性信息素是它们进行化学交流的必要条件。鳞翅目昆虫甜菜夜蛾的性信息素含有在第12个碳位置上有双键的不饱和脂肪酸衍生物。甜菜夜蛾的去饱和酶 ( SexiDES5 ) 被认为具有双重功能,它通过在第11和12个碳上形成双键来合成Z9,E12-十四碳二烯酸,该酸可乙酰化为主要的性信息素成分Z9,E12-十四碳烯酸乙酸酯 ( Z9E12-14:Ac )。利用 CRISPR/Cas9 构建了 SexiDES5 的缺失体,并进行近交繁殖以获得纯合子。突变雌蛾不能产生Z9E12-14:Ac以及Z9-14:Ac和Z11-14:Ac。突变雌蛾的信息素提取物也不能在雄蛾触角中诱发感觉信号。它们也不能诱导雄蛾的交配行为,包括毛笔竖立和定向。在田间,这些突变雌蛾不能吸引任何雄蛾,而对照雌蛾可以吸引雄蛾。这些结果表明SexiDES5能够催化第11和12位上的去饱和作用,从而产生S . exigua的性信息素成分。这项研究还表明,通过产生没有吸引力雌蛾,基因组编辑技术可以应用于害虫防治。
Omega-3 长链多不饱和脂肪酸 (LC-PUFA)、二十碳五烯酸 (EPA;20:5 D 5,8,11,14,17) 和二十二碳六烯酸 (DHA;22:6 D 4,7,10,13,16,19) 现已被公认为健康均衡饮食的重要组成部分 (Napier 等人,2019 年;West 等人,2021 年)。供应 Omega-3 脂肪酸的野生捕捞渔业已达到可持续生产的最高水平;因此,满足日益增长的人口日益增长的需求的尝试依赖于替代鱼油来源 (Tocher 等人,2019 年)。亚麻荠 (Camelina sativa) 是一种油籽作物,含有高含量 ( > 35 % ) 的 α -亚麻酸 (ALA;18:3 D 9,12,15 ),并且已重建一条从 ALA 到亚麻荠 cv 中合成 EPA 和 DHA 的生物合成途径。 Celine 种子通过表达异源去饱和酶和延长酶基因,产生与海洋鱼油相当的 EPA 和 DHA 水平,以原型系 DHA2015.1(缩写为 DHA1)为例,积累了超过 25% 的 n-3 LC-PUFA(图 S1 和 S2(Petrie 等人,2014 年;Ruiz-Lopez 等人,2014 年)。英国、美国和加拿大的 DHA1 田间试验表明,omega-3 LC-PUFAs 特性在不同的地理位置和农业环境中是稳定的(Han 等人,2020 年)。同时,使用 DHA1 种子油的鲑鱼饲养试验和人类饮食研究均表明,这些转基因植物衍生油可以作为海洋衍生鱼油的有效替代品(Betancor 等人,2018 年;West 等人2021 年)。基于我们观察到的 ALA 是种子 omega-3 LC-PUFA 生产的内源性 C18 前体(Han 等人,2020 年),我们假设增加 ALA 库可以进一步增强 DHA1 亚麻荠中的 EPA/DHA 积累。DHA1 构建体已经含有 D 12 去饱和酶,可驱动脂肪酸流入 PUFA 生物合成(图 S1 和 S2)。然而,作为一种不太明显的方法,我们建议使用基因编辑的亚麻荠 fae1 突变体。亚麻荠 FAE1 与内源性 FAD2 D 12 去饱和酶(其
与 IGBT 相比,SiC 电源开关易受短路影响,短路可能会严重损坏电力电子系统。通常,IGBT 的短路耐受时间约为 10 µs,而 SiC 的短路耐受时间约为 2 µs。因此,在使用 SiC 电源开关进行设计时,务必考虑添加去饱和或过流保护等保护元件。某些栅极驱动器(例如 UCC21710 栅极驱动器)具有内置短路保护功能,可检测和响应短路事件。要了解有关 SiC FET 短路保护的更多信息,请参阅应用说明“了解 SiC MOSFET 的短路保护”。
向日葵 ( Helianthus annuus L.) 是世界上最重要的油料作物之一,用途广泛 (Hu 等,2010)。根据脂肪酸组成,向日葵可分为高油酸 (85%)、中油酸 (60-65%) 和亚油酸 (低油酸)。世界对高油酸向日葵的生产和消费需求不断增加,因为高油酸向日葵基因型在工业用途和人类健康方面具有各种优势 (Kaya 等,2007)。向日葵的油组成可以通过对脂肪酸去饱和酶 2 ( FAD2 ) 基因进行遗传修饰来改变,这种修饰促进油酸到亚油酸的生物转化。使用化学诱变剂二甲基亚砜 (DMSO) 可将 Pervenets 向日葵品种的油酸组成提高至 75%(Soldatov 等人,1976 年)。许多衍生自突变体 Pervenets 的自交系的油酸组成高达 90%(Fernandez-Martinez 等人,1993 年;Miller 等人,1987 年;Zambelli 等人,2015 年)。此外,Vick & Miller(1996 年)报道了通过使用乙基甲烷磺酸盐 (EMS) 处理来开发高油酸和中油酸向日葵突变体。同样,Leon 等人(2013b)也进行了 EMS 处理以开发高油酸突变体。该处理诱导了点突变,导致氨基酸替换和过早终止密码子(Leon 等人,2013b)。另一方面,FAD2-1基因的重复导致基因转录沉默,从而导致油酸的积累(Lacombe等,2009;Martinez-Rivas等,2001)。此外,Schuppert等(2006)也报道了高油酸突变体向日葵是通过FAD2-1基因的重复和向日葵基因型中油酰磷脂酰胆碱去饱和酶的诱导而产生的。
摘要 从寡核苷酸定向诱变 (ODM) 到 CRISPR 系统,基因组编辑工具都使用合成寡核苷酸进行核苷酸的靶向交换。目前,大多数基因组编辑方案依赖于具有体细胞克隆变异和植物再生限制的体外细胞或组织培养系统。因此,我们在此报告了一种用于优化 ODM 的替代植物细胞测试系统,该系统基于将寡核苷酸溶液注射到单倍体玉米幼苗的顶端分生组织区域。使用 5′-荧光素标记的寡核苷酸,我们检测到合成 DNA 分子在茎尖分生组织细胞和叶原基维管束中的积累。为了沉默或敲低体细胞中的八氢番茄红素去饱和酶基因,将带有 TAG 终止密码子的 41 碱基长的单链寡核苷酸注射到玉米幼苗中。我们检测到长出的 M1 幼苗长出了带有白色条纹或浅绿色的叶子。白色条纹的共聚焦显微镜显示,除了叶绿素荧光缺乏的组织区域外,白色条纹中还存在含叶绿素的细胞。对白色条纹的 DNA 样本进行 Ion Torrent 测序表明,八氢番茄红素去饱和酶基因中的 TAG 终止密码子的读取频率为 0.13–1.50%。在将寡核苷酸分子注射到玉米幼苗的茎尖分生组织区域后,出现褪绿异常支持了寡核苷酸分子的诱变性质。所述方案为在幼苗早期阶段表征具有不同化学性质的诱变寡核苷酸的功能以及在植物水平上测试各种处理组合的效率提供了基础。
过早的婴儿应在适当的年代年龄进行免疫接种。这对于乙型肝炎感染的女性出生的婴儿至关重要,因为延迟会增加感染的机会。但是,疫苗接种后呼吸暂停的发生量特别高于出生的婴儿。因此,在医院住院的非常过早的婴儿(出生≤28周的妊娠≤28周)应在接受第一次免疫时进行48-72小时的呼吸监测,尤其是那些先前具有呼吸道不成熟史的免疫。如果婴儿在第一次免疫后患有呼吸暂停,心动过缓或去饱和,则第二次免疫也应在医院中进行,呼吸道监测48-72小时。由于这组婴儿的疫苗接种益处很高,因此不应扣留或延迟疫苗。
过早的婴儿应在适当的年代年龄进行免疫接种。这对于乙型肝炎感染母亲所生的婴儿至关重要,因为延迟会增加感染的机会。但是,疫苗接种后呼吸暂停的发生量特别高于出生的婴儿。因此,在医院住院的非常过早的婴儿(出生≤28周的妊娠≤28周)应在接受第一次免疫时进行48-72小时的呼吸监测,尤其是那些先前具有呼吸道不成熟史的免疫。如果婴儿在第一次免疫后患有呼吸暂停,心动过缓或去饱和,则第二次免疫也应在医院中进行,呼吸道监测48-72小时。由于这组婴儿的疫苗接种益处很高,因此不应扣留或延迟疫苗。