在本文中,我们的主要目标是应用参数估计理论技术和 Fisher 信息形式的量子计量概念来研究马尔可夫近似下某些物理量在两纠缠量子比特系统的开放量子动力学中的作用。存在各种表征此类系统的物理参数,但不能将其视为任何量子力学可观测量。必须进行详细的参数估计分析以确定此类量的物理一致参数空间。我们应用经典 Fisher 信息 (CFI) 和量子 Fisher 信息 (QFI) 来正确估计这些参数,这些参数在描述开放量子系统的非平衡和长距离量子纠缠现象中发挥着重要作用。与经典参数估计理论相比,量子计量发挥着双重优势,提高了参数估计的精度和准确度。此外,本文提出了一种量子计量方面的新途径,它超越了经典参数估计。我们还提出了一个有趣的结果,即由于早期时间尺度上的长程量子纠缠而导致的后期时间尺度上非平衡特征的复活,并根据早期时间尺度上贝尔不等式违反导致的非局域性提供了物理解释。
在本文中,我们的主要目的是以Fisher信息的形式应用参数估计理论的技术和量子计量学的概念,以赋予Markovian近似下两个纠缠Qubit System的开放量子动力学中某些物理量的作用。存在各种特征于这种系统的物理参数,但不能被视为可观察到的任何量子机械。必须进行详细的参数估计分析以确定此类数量的物理一致参数空间。我们同时应用经典的Fisher信息(CFI)和量子Fisher信息(QFI)正确估计了这些参数,这些参数起着重要作用,以描述开放量子系统的不平衡和远程量子纠缠现象。量子计量学起着两倍的优势作用,提高了参数估计的精确性和准确性。此外,在本文中,我们在量子计量学方面提出了一种新的途径,该途径超过了经典参数估计。我们还提出了在晚期尺度上复兴不平衡特征的复兴,这是由于早期尺度上的远距离量子纠缠而引起的,并在贝尔在早期时间尺度上违反不平等的不平等现象提供了一种物理解释。
摘要 — 由于脑动力学的复杂性,静息态功能性磁共振成像 (rsfMRI) 中血氧水平依赖性 (BOLD) 信号的传统建模难以进行参数估计。本研究介绍了一种新型脑动力学模型 (BDM),该模型通过微分方程直接捕捉 BOLD 信号变化。与动态因果模型或神经质量模型不同,我们将血流动力学响应整合到信号动力学中,同时考虑直接和网络介导的神经元活动效应。我们利用物理信息神经网络 (PINN) 来估计此 BDM 的参数,利用它们将物理定律嵌入学习过程的能力。这种方法简化了计算需求并提高了对数据噪声的鲁棒性,为分析 rsfMRI 数据提供了全面的工具。利用按估计参数缩放的功能连接矩阵,我们应用最先进的社区检测方法来阐明网络结构。我们的分析表明,在比较神经正常个体与自闭症谱系障碍 (ASD) 患者时,特定大脑区域的参与系数存在显著差异,男性和女性群体之间存在明显差异。这些差异与之前研究中涉及的区域一致,进一步证实了这些区域在 ASD 中的作用。通过将 PINN 与高级网络分析相结合,我们展示了一种分析 ASD 复杂神经特征的稳健方法,为神经成像和更广泛的计算神经科学领域的未来研究提供了一个有希望的方向。
摘要。在两级原子的合奏中,可以用集体自旋描述,可以使用纠缠状态来增强干涉精度测量的灵敏度。非高斯旋转状态可以产生比自旋方形高斯状态更大的量子增强,但它们的使用需要测量可观察到的旋转三个成分的非线性函数。在本文中,我们制定了使用非线性单轴扭曲的哈密顿量产生的非高斯状态实现最佳量子增强的策略,并表明测量后交互作用技术在量子参数估计方案中扩大输出信号已知,在量子参数估计方案中扩大了效果,在量子估计方案中具有效率。包括来自原子实验的相关退积过程的存在,我们可以通过分析确定非高斯过度斑点状态的量子增强,这是任意原子数的噪声参数的函数。
提高可再生能源系统效率的研究日益引起了人们对高功率密度 (HPD) 储能单元的兴趣。HPD 单元与高能量密度 (HED) 储能系统一起使用时,可形成混合储能系统 (HESS)。超级电容器是 HPD 中最常用的储能单元,具有成本低、自放电率低和使用寿命长等特点。当系统需要高功率时,超级电容器用于支持 HED 单元,以确保传输功率的稳定性、效率和高质量。在 HESS 中以精确的时间使用超级电容器对其性能有重大影响。因此,必须正确建模超级电容器并将其与系统很好地集成。在本研究中,利用从模拟研究中获得的数据进行参数估计,并对超级电容器进行建模。对超级电容器模型进行了不同电流下的充电和放电测试,并获得了成功的结果。
随着理论和应用技术的进步,基于经典加密的通信系统受到量子计算和分布式计算的严重威胁。为了抵御安全威胁,一种将机密信息直接加载到量子态上的通信方法——量子安全直接通信(QSDC)应运而生。本文报告了第一个连续变量QSDC(CV-QSDC)实验演示,以验证基于高斯映射的CV-QSDC协议的可行性和有效性,并提出了一种实际信道下信号分类的参数估计。在我们的实验中,我们提供了4×10 2 个块,每个块包含10 5 个数据用于直接信息传输。对于我们实验中5 km的传输距离,过剩噪声为0.0035 SNU,其中SNU表示散粒噪声单位。4.08×10 5 bit/s的实验结果有力地证明了光纤信道下CV-QSDC的可行性。提出的基于参数估计的等级判断方法为实际光纤通道中的CV-QSDC提供了一种实用、可用的消息处理方案,为等级协调奠定了基础。
量子计量可以实现超出标准量子极限的未知参数估计的增强灵敏度。最近,利用量子资源的多相位估计因其在量子成像和传感器网络中的应用而引起了人们的浓厚兴趣。对于多相位估计,增强灵敏度的量取决于量子探测状态,而多模 N 00 N 状态是已知的关键资源。然而,由于生成这种状态极具挑战性,因此迄今为止一直缺少它的实验演示。在这里,我们报告了多模 N 00 N 状态的生成和使用多模 N 00 N 状态的量子增强多相位估计的实验演示。特别是,我们表明,使用我们的双光子四模 N 00 N 状态和使用 4 × 4 多模分束器的测量方案,量子 Cramer-Rao 界限可以饱和。我们的多相位估计策略为研究多参数估计场景提供了一个可靠的平台。
无限尺寸的量子系统(例如骨振荡器)为量子传感提供了丰富的资源。然而,关于如何操纵这种骨气模式以超越参数估计的一般理论尚不清楚。我们提出了一个一般算法框架,量子信号处理干涉法(QSPI),通过推广Ramsey型干涉法,以在量子力学的基本限制下进行量子传感。我们的QSPI传感协议依赖于通过概括量子信号处理(QSP)从Qubits到混合量子振荡器系统来对振荡器的正交运算符进行非线性多项式转换。我们使用QSPI传感框架在单发限制中在位移通道上做出有效的二进制决策。理论分析表明,在单次乘以测量的情况下,传感精度与算法的传感时间或电路深度呈呈相反。我们进一步串联了一系列这样的二进制决策,以逐局的方式执行参数估计。数值模拟以支持这些语句。我们的QSPI协议为量子提供了统一的框架
图 1 分箱对固定效应参数估计的均方误差 (MSE) 的影响。我们模拟了 2000 个具有 5 个固定效应(10,000 个观测值)的成像变量。然后,使用 20 个不同的箱值,我们使用 FEMA 估计参数并计算参数估计的平均(超过 50 次重复)平方误差。面板 (a) 中的黑色虚线表示五个固定效应中的每一个的总 MSE(跨 2000 个成像变量),而橙色实线表示五个固定效应的总 MSE 的平均值。我们观察到最小总 MSE 在箱值为 100(由绿线表示)时,而箱值为 20(由紫线表示)显示出可比的 MSE;面板 (b) 显示每个箱值所需的计算时间(跨 50 次重复取平均值);箱值为 20(紫线)的计算时间是箱值为 100(绿线)所需计算时间的一小部分。请注意,两个面板的 x 轴都是非线性的。
摘要:朱莉娅是一种通用编程语言,旨在简化和加速数值分析和计算科学。尤其是朱莉娅软件包的科学机器学习(SCIML)生态系统包括用于高性能符号数量计算的框架。它允许用户使用符号预处理和自动sparsifient和计算并行化来自动增强其模型的高级描述。此功能可以对微分方程,有效的参数估计以及具有神经微分方程的自动化模型发现的有效参数估计以及非线性动力学的稀疏识别。为了使系统生物学社区轻松访问SCIML,我们开发了sbmltoolkit.jl。sbmltoolkit.jl将动态SBML模型导入SCIML生态系统,以加速模型模拟和动力学参数的拟合。通过为计算系统生物学家提供容易访问开源的朱莉娅Ecosystevnm,我们希望能够促进该领域中进一步的朱莉娅工具的开发以及朱莉娅生物科学界的增长。sbmltoolkit.jl可根据麻省理工学院许可免费获得。源代码可在https://github.com/sciml/sbmltoolkit.jl上获得。