对类人动作和人类运动的动力学和运动学分析需要对段质量参数(质量,质量中心和惯性基质)进行准确估算,并且它们的误解可能会导致估计的关节运动学的显着差异。在机器人技术领域中,已经开发了几种方法,用于基于双足体系统动态方程的线性特性,以相对于一组质量参数。本演讲将重点介绍有关该主题最新研究的方法。将给出人类和类人形机器人质量参数估计的示例。确定的质量参数改善了人类动态分析的输出和人形模拟和基于模型的控制。
描述运行伊迪丝(Edith)(环境DNA整合传输和水文学)模型,该模型在河网尺度上实现了环境DNA(EDNA)运输的质量平衡,并与物种分布模型相结合以获得物种分布的地图。Edith可以与EDNA浓度(例如,通过定量聚合酶链反应获得)或元法编码(读取计数)数据一起使用。参数估计可以通过贝叶斯技术(通过'Bayesiantools'软件包)或优化算法执行。提供了“ DHARMA”软件包的接口,用于后验预测检查。参见Carraro和Altermatt(2024)有关包装简介; Carraro等。(2018)和Carraro等。(2020)用于方法论细节。
在涉及系统识别,自适应控制和机器学习的应用程序中,随着时间的推移会不断处理输入输出数据流,以产生参数/权重估计的效率,以使假定的模型的行为与数据源相匹配。例如,在控制的背景下,这通常意味着模型的动力学应渐近地接近植物的动力学。当模型与工厂不兼容或数据流中包含不良信息时,这可能不会发生。更微妙的失败模式是模型的动力学不持续取决于参数的一种。在这种情况下,参数估计的序列可能会收敛到一定极限,而模型动力学的相应近似序列在任何意义上都无法收敛。
量子数字签名(QDS)基于量子力学原理,提供信息论安全性,确保数据传输的完整性、真实性和不可否认性。在现有的 QDS 协议下,与测量设备无关的 QDS(MDI-QDS)可以抵抗所有针对检测的攻击,但它受到有限尺寸效应的影响。在本文中,我们提出并比较了三种用于双诱饵 MDI-QDS 有限尺寸分析的参数估计模型。第一个模型是以前方案中常用的模型,我们提出了两个新模型来提高性能。随后,我们进行数值模拟以评估这三个模型的性能。结果表明,所提出的方法受有限尺寸效应的影响较小,从而有效提高签名率。这项工作有助于 QDS 的实用化发展。
我们提出了一种计算效率高的方法来推导量子态最敏感的幺正演化。这使我们能够确定纠缠态在量子传感中的最佳用途,即使在复杂系统中,当正则压缩示例的直觉失效时也是如此。在本文中,我们表明,使用给定量子态可获得的最大灵敏度由量子 Fisher 信息矩阵 (QFIM) 的最大特征值决定,而相应的演化由重合的特征向量唯一确定。由于我们优化了参数编码过程,而不是专注于状态准备协议,因此我们的方案适用于任何量子传感器。该过程通过 QFIM 的特征向量确定具有最佳灵敏度的最大交换可观测量集,从而自然地优化了多参数估计。
大生物多样性数据集具有较大的分类,地理和时间范围,具有监测和研究的巨大潜力。此类数据集对于评估物种种群和分布的时间变化尤为重要。可用数据中的差距,尤其是空间和时间差距,通常意味着数据不能代表目标人群。这阻碍了大规模推论,例如关于物种的趋势,并可能导致放错了保护作用。在这里,我们概念化了生物多样性监视数据的差距是缺少的数据问题,该数据为不同类型的生物学数据集的挑战和潜在解决方案提供了一个统一的框架。我们将典型的数据差距类型表征为不同类别的缺少数据类别,然后使用丢失的数据理论来探讨有关物种趋势和影响事件/丰富性的因素的含义。通过使用此框架,我们表明,当影响采样和/或数据可用性与影响物种的因素重叠时,可能会由于数据差距而产生的偏差。,但数据集本身没有偏见。结果取决于生态问题和统计方法,该方法确定了围绕哪些变异来源考虑的选择。我们认为,使用监视数据进行长期物种趋势建模的典型方法特别容易受到数据差距的影响,因为这种模型不倾向于说明驱动缺失的因素。为了确定解决此问题的一般解决方案,我们回顾了实证研究并使用仿真研究来比较一些最常使用的方法来处理数据差距,包括亚采样,加权和插补。所有这些方法具有减少偏差的潜力,但可能以增加参数估计的不确定性成本。加权技术可以说是迄今为止生态学中最不使用的,并且具有减少参数估计的偏差和方差的潜力。无论方法如何,降低偏见的能力都取决于对数据差距的知识和数据的可用性。在处理数据收集和分析工作流的不同阶段的数据差距时,我们使用此评论概述了必要的考虑。
大生物多样性数据集具有较大的分类,地理和时间范围,具有监测和研究的巨大潜力。此类数据集对于评估物种种群和分布的时间变化尤为重要。可用数据中的差距,尤其是空间和时间差距,通常意味着数据不能代表目标人群。这阻碍了大规模推论,例如关于物种的趋势,并可能导致放错了保护作用。在这里,我们概念化了生物多样性监视数据的差距是缺少的数据问题,该数据为不同类型的生物学数据集的挑战和潜在解决方案提供了一个统一的框架。我们将典型的数据差距类型表征为不同类别的缺少数据类别,然后使用丢失的数据理论来探讨有关物种趋势和影响事件/丰富性的因素的含义。通过使用此框架,我们表明,当影响采样和/或数据可用性与影响物种的因素重叠时,可能会由于数据差距而产生的偏差。,但数据集本身没有偏见。结果取决于生态问题和统计方法,该方法确定了围绕哪些变异来源考虑的选择。我们认为,使用监视数据进行长期物种趋势建模的典型方法特别容易受到数据差距的影响,因为这种模型不倾向于说明驱动缺失的因素。为了确定解决此问题的一般解决方案,我们回顾了实证研究并使用仿真研究来比较一些最常使用的方法来处理数据差距,包括亚采样,加权和插补。所有这些方法具有减少偏差的潜力,但可能以增加参数估计的不确定性成本。加权技术可以说是迄今为止生态学中最不使用的,并且具有减少参数估计的偏差和方差的潜力。无论方法如何,降低偏见的能力都取决于对数据差距的知识和数据的可用性。在处理数据收集和分析工作流的不同阶段的数据差距时,我们使用此评论概述了必要的考虑。
摘要 规划大型地源热泵 (GSHP) 系统的运行需要精确的地下管换热器 (BHE) 模型,这些模型不需要大量计算。在本文中,我们提出使用测量数据进行参数估计作为改进 BHE 分析模型的一种方法。该方法已应用于运行超过 3 年的 GSHP 系统。BHE 的建模负载和测量负载之间的偏差从 22% 降低到 14%。通过改变校准数据的时间分辨率和季节来测试校准数据集的影响。我们得出结论,时间分辨率必须足够高才能区分不同参数的影响,并且必须对注入和提取(季节)使用不同的模型参数。该方法还应用于已监测 10 年的 GSHP,结果表明,通过每年更新参数可以提高模型的准确性。
tr框架并激励该报告,我们从现有的2G检测器科学协作的背景开始,并概述了当前使用的计算模型和方法。有关推动计算需求的科学的其他背景,请参阅3G科学案例报告。[1]高级LIGO/高级处女座协作(LVC)由位于汉福德(WA),利文斯顿(Livingston)(La)和PISA(意大利)的三个重力波(GW)干涉仪组成。在2015年9月,LVC开始了一系列高级ERA探测器运行,命名法“ O#”。o1从2015年9月到2016年1月,以及对GWS的首次检测,该运行以检测三个二进制黑洞(BBH)合并而告终。O2从2016年12月到2017年8月底运行。 以及对许多其他BBH合并的检测,O2首次看到合并的两个中子星(BNS)。 O3始于2019年4月1日,由于Covid-19-Pandemics施加的锁定,已于2020年3月27日终止。。 进一步预计日本干涉仪Kagra将加入即将到来的O4跑步。 从数据分析计算的角度来看,从O1到O2的过渡是搜索和参数估计阶段所需的计算能力的提高。 在搜索(检测)阶段,波形模板库的大小增加以适应较大的质量。 这些分析中最多的10个计算密集型占需求的90%,其余的70个尾巴很长。O2从2016年12月到2017年8月底运行。以及对许多其他BBH合并的检测,O2首次看到合并的两个中子星(BNS)。O3始于2019年4月1日,由于Covid-19-Pandemics施加的锁定,已于2020年3月27日终止。。 进一步预计日本干涉仪Kagra将加入即将到来的O4跑步。 从数据分析计算的角度来看,从O1到O2的过渡是搜索和参数估计阶段所需的计算能力的提高。 在搜索(检测)阶段,波形模板库的大小增加以适应较大的质量。 这些分析中最多的10个计算密集型占需求的90%,其余的70个尾巴很长。O3始于2019年4月1日,由于Covid-19-Pandemics施加的锁定,已于2020年3月27日终止。进一步预计日本干涉仪Kagra将加入即将到来的O4跑步。从数据分析计算的角度来看,从O1到O2的过渡是搜索和参数估计阶段所需的计算能力的提高。在搜索(检测)阶段,波形模板库的大小增加以适应较大的质量。这些分析中最多的10个计算密集型占需求的90%,其余的70个尾巴很长。在参数估计阶段中,虽然每次运行的计算成本几乎与O1中的计算成本相同,但GW来源的数量大大增加,以及BNS合并发现所需的探索性运行数量,导致计算成本爆炸。此外,这些发现提供了一个机会,可以进行不可预见的计算密集分析,以测量哈勃 - 莱默焦点常数H0,测试GR的有效性并限制中子星体的内部物理学。在其第三次观察跑步(O3)中,Ligo-Virgo协作估计其正在进行的数据分析计算要求为7亿CPU核心小时1年,以执行80个天体物理搜索,随访活动和检测器表征活动。大多数计算都由搜索“深”的“深”搜索“深”的高吞吐量计算(HTC)组成; 10%用于生成多通间剂(电磁,中微子)随访的快速警报所需的低延迟数据分析。几乎不需要高性能并行计算,而这些仿真不包括在本评估中。在O1期间,绝大多数计算能力是由专用的Ligo-Virgo群集(无论是现场还是在大型计算中心)提供的,在O2和O3期间,越来越多地使用了外部共享计算资源。共享外部计算资源的增长促使开发了分布式计算模型,类似于大型LHC协作使用的计算模型。此外,处女座,Ligo和Kagra的合作正在加入从部分互操作的计算资源转变为完全共享的共享常见计算基础架构