课程描述食品链和环境中微生物风险评估模型的原理。参数估计,模型实现和统计软件中的随机模拟。食物,水,空气和富米特人可能会受到传染病药物(例如微生物,病毒,原生动物)的污染。这些可能是在不同位置引入的,起源于不同的储层,这些试剂的种群大小和特性可能会在整个传输链中发生变化。当消耗污染的食物或水时,或与受污染的物体接触时,这些药物会感染人类。在定量微生物风险评估(QMRA)中,有关传播链不同步骤中传染剂的患病率和浓度的知识与人类行为的量化和剂量反应关系相结合,以计算人类感染和病的风险。QMRA建模的基本原理将通过讲座,案例研究和编码实践的结合来教授。
越来越多的科学领域的研究人员开始接触贝叶斯统计或贝叶斯概率论。通过包含归纳和演绎逻辑,贝叶斯分析可以将模型参数估计提高许多数量级。它为所有数据分析问题提供了一种简单而统一的方法,允许实验者根据当前的知识状态为感兴趣的竞争假设分配概率。本书通过大量示例和问题集清晰地阐述了底层概念。本书还讨论了实施贝叶斯计算的数值技术,包括对马尔可夫链蒙特卡罗积分的介绍以及从贝叶斯角度看的线性和非线性最小二乘分析。此外,附录中提供了背景材料,支持 Mathematica 笔记本可从 www.cambridge.org/052184150X 获得,为高年级本科生、研究生或任何认真的物理科学或工程研究人员提供了一条简单的学习途径。
摘要:电池运营商的重要收入来源通常是在拍卖行中仲裁每小时价格的利差。如果风险是考虑因素,则最佳方法是具有挑战性的,因为这需要估计密度函数。由于每小时价格不正常,也不是独立的,因此从单独估计的价格密度的差异产生差异通常是棘手的。因此,对所有日内每小时扩散的预测被直接指定为含有密度的上三角基质。该模型是一种灵活的四参数分布,用于产生动态参数估计,以外源性因素为条件,最重要的是风,太阳能和天上的需求预测。这些预测支持每天在单个和多个周期运行的存储设施的最佳日程安排。本文认为,优化的利用差价是创新的,而不是每小时的价格,这在降低风险方面更具吸引力。与传统的每日高峰和低谷交易的方法相反,根据天气预报的不同,发现多个交易是促销和机会主义的。
现有的构图特征的现有效应措施对于许多现代应用,例如在微生物组研究中是不足的,因为它们表现出可以通过传统的参数方法对高差异性和稀疏性等性状进行的特质。此外,以公正的方式评估组合物的摘要统计数据(例如种族多样性)如何影响响应变量并不简单。我们提出了一个基于假设数据扰动的框架,该框架定义了对组成本身的可解释的统计功能,我们称其称为平均扰动效应。这些效果自然说明了偏见经常使用边际依赖分析的混淆。我们通过得出依赖摄动依赖性的重复化并应用半参数估计技术来显示如何有效估计平均扰动效应。我们对模拟和半合成数据的经验分析了提出的估计量,并证明了与纽约学校和微生物组数据的数据相比的优势。
co1应用与统计推断有关的概念,例如随机抽样和采样分布。CO2根据样本估算分布的参数,并进行假设检验,回归分析,相关性和方差分析。 CO3应用数学和统计数据的全面知识来解决静态概率,动态概率的问题。 CO4使用随机过程的知识,提出现实生活中的问题并确定长期概率。 co5基于毒物过程,估计排队系统统计推断的各种性能度量:随机抽样,抽样分布,参数估计和假设检验,回归,相关性和方差的相关性和分析 - 示例 - 示例。 静态概率,动态概率。 状态分类,马尔可夫过程的链。 马尔可夫系统的稳定性,限制行为,随机步行。 泊松过程:假设和衍生,相关分布,出生和死亡过程。 排队系统,一般概念,M/M/1模型和M/M/S,稳态行为,瞬态行为。 参考:1。 Hogg&Craig(1975),“数学统计概论”,第4THEDN。,MACMILLAN,2。 J.Medhi,“随机过程”。 3。 A. Papoulis和S.U. Pillai,概率,随机变量和随机过程,CO2根据样本估算分布的参数,并进行假设检验,回归分析,相关性和方差分析。CO3应用数学和统计数据的全面知识来解决静态概率,动态概率的问题。CO4使用随机过程的知识,提出现实生活中的问题并确定长期概率。co5基于毒物过程,估计排队系统统计推断的各种性能度量:随机抽样,抽样分布,参数估计和假设检验,回归,相关性和方差的相关性和分析 - 示例 - 示例。静态概率,动态概率。状态分类,马尔可夫过程的链。马尔可夫系统的稳定性,限制行为,随机步行。泊松过程:假设和衍生,相关分布,出生和死亡过程。排队系统,一般概念,M/M/1模型和M/M/S,稳态行为,瞬态行为。参考:1。Hogg&Craig(1975),“数学统计概论”,第4THEDN。,MACMILLAN,2。 J.Medhi,“随机过程”。 3。 A. Papoulis和S.U. Pillai,概率,随机变量和随机过程,Hogg&Craig(1975),“数学统计概论”,第4THEDN。,MACMILLAN,2。J.Medhi,“随机过程”。3。A. Papoulis和S.U. Pillai,概率,随机变量和随机过程,A. Papoulis和S.U.Pillai,概率,随机变量和随机过程,
摘要 — 磁共振成像 (MRI) 是临床诊断中一种重要的非侵入性成像方法。除了常见的图像结构之外,参数成像还可以提供内在的组织特性,因此可用于定量评估。新兴的深度学习方法提供了快速准确的参数估计,但仍然缺乏网络解释和足够的训练数据。即使有大量的训练数据,训练数据和目标数据之间的不匹配也可能导致错误。在这里,我们提出了一种仅依赖于目标扫描数据而不需要预定义训练数据库的方法。我们提供了一个概念验证,将 MRI 的物理规则 Bloch 方程嵌入到物理信息神经网络 (PINN) 的损失中。PINN 能够学习 Bloch 方程,估计 T2 参数,并生成一系列物理合成数据。在幻像和心脏成像上进行了实验结果,以证明其在定量 MRI 中的潜力。
2.6连贯性,多元自回归(MVAR)建模和定向转移功能(DTF)67 2.7混乱和动态分析71 2.7.1熵71 2.7.2 Kolmogorov熵71 2.7.7.3.7.3 Series 75 2.7.6 Approximate Entropy 11 2.7.7 Using the Prediction Order 78 2.8 Filtering and Denoising 79 2.9 Principal Component Analysis 83 2.9.1 Singular-Value Decomposition 84 2.10 Independent Component Analysis 86 2.10.1 Instantaneous BSS 90 2.10.2 Convolutive BSS 95 2.10.3 Sparse Component Analysis 98 2.10.4 Nonlinear BSS 99 2.10.5 Constrained BSS 100 2.11受约束BSS的应用:示例102 2.12信号参数估计104 2.13分类算法105 2.13.1支持向量机106 2.13.2 K-Means算法114 2.14匹配匹配追踪117 2.15摘要和结论118参考119 119 119
AAI 500 | 人工智能的概率和统计 学分:3 可重复性:否 本课程介绍概率和统计概念及其在解决实际问题中的应用,以及 Python 编码的介绍。这门入门课程提供了概率和统计应用的坚实背景,这将成为高级 AI 方法的基础。将涵盖统计概念、概率论、随机和多变量、数据和抽样分布、描述统计和假设检验。此外,本课程还将介绍如何使用 Python 进行基本统计。涵盖的主题包括数据的数字和图形描述、概率元素、抽样分布、概率分布函数、总体参数估计和假设检验。本课程将把从文本、案例研究和标准组织流程中学到的知识与实际的问题解决技能相结合,以呈现、构建和规划问题,就像在大型企业中呈现的那样,并执行结构化分析过程中的步骤。最终的团队项目还将涵盖团队合作、专业演示和学术写作。
摘要 - 在本文中,开发了一种自适应轨迹同步控制器,该控制器是在机器人模型参数(包括非线性参数摩擦术语)中的通信时间延迟和不确定性的情况下将机器人关节轨迹同步到人类关节轨迹的。通过解释人类机器人协作任务中出现的时间延迟,例如,使用图像处理估算人类轨迹或传感器融合以进行轨迹意图估计或计算限制,将控制器同步到人类轨迹。开发的自适应时间延迟同步控制器采用了新的积分并发学习(ICL)基于基于神经网络参数估计的参数更新定律。使用Lyapunov-Krasovskii函数分析证明了同步和参数估计误差的最终有界稳定性。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。使用人类机器人同步示例提出了蒙特卡洛模拟的结果,以验证所提出的同步控制器的性能。
摘要近年来,将机械知识与机器学习融合对数字医疗保健产生了重大影响。在这项工作中,我们引入了一条计算管道,以在先天性心脏病的儿科患者中构建心脏电生理学的数字复制品。我们通过半自动分割和网格划分工具来构建患者特定的几何形状。我们生成了一个涵盖细胞到器官级模型参数的电生理模拟数据集,并利用基于微分方程的严格数学模型。我们先前提出的分支潜在神经图(BLNM)是一种准确有效的手段,用于概括神经网络中的复杂物理过程。在这里,我们采用BLNM来编码硅12铅电图(ECGS)中的参数性时间动力学。BLNM充当了心脏功能的几何特异性替代模型,可快速,健壮的参数估计,以匹配小儿患者的临床ECG。通过灵敏度分析和不确定性量化评估校准模型参数的可靠性和可信赖性。