我们对通过测量已知温度的吉布斯热态来估计未知汉密尔顿参数的最佳精度设定了上限和下限。界限取决于包含参数的汉密尔顿项的不确定性以及该项与完整汉密尔顿量的不交换程度:不确定性越高和交换算子越多,精度越高。我们应用界限来表明存在纠缠热态,使得可以以比 1 = ffiffiffi np 更快的误差来估计参数,从而超过标准量子极限。这个结果支配着汉密尔顿量,其中未知标量参数(例如磁场分量)与 n 个量子比特传感器局部相同耦合。在高温范围内,我们的界限允许精确定位最佳估计误差,直至常数前因子。我们的界限推广到多个参数的联合估计。在这种情况下,我们恢复了先前通过基于量子态鉴别和编码理论的技术得出的高温样本缩放。在应用中,我们表明非交换守恒量阻碍了化学势的估计。
数值模拟通常用于理解给定时空现象的参数依赖性。对多维参数空间进行采样并运行相应的模拟将产生大量时空模拟运行的集合。分析集合的主要目的是将多维参数空间划分(或分割)为具有相似行为的模拟运行的连通区域。为了促进这种分析,我们提出了一种用于多维参数空间分区的新型可视化方法。我们的可视化基于超切片器的概念,它允许不失真地查看参数空间段的范围和转换。对于参数空间内的导航,支持与参数空间样本的 2D 嵌入(包括它们的段成员资格)的交互。通过分析集合模拟运行的相似性空间,以半自动方式生成参数空间分区。相似模拟运行的集群会诱导参数空间分区的段。我们将参数空间分区可视化与集成模拟运行的相似空间可视化相链接,并将它们嵌入到交互式可视化分析工具中,该工具支持对时空模拟集成的所有方面的分析,其总体目标是分析参数空间分区。然后可以对分区进行可视化分析和交互式细化。我们将我们的方法与其他方法进行了比较,并与来自三个不同领域的案例研究中的专家一起对其进行了评估。© 2022 Elsevier BV 保留所有权利。
网站:www.projectsfactory.in | 电子邮件:info@projectsfactory.in | G-mail:projectsfactoryind@gmail.com
在超导量子电路(例如量子位)中,信息以微波量子信号的形式处理和传输。在量子信息协议结束时,这些信号必须由室温电子设备记录。由于微波量子信号通常由很少的光子组成,因此必须放大它们才能达到合理的信噪比。因此,量子信号的低噪声放大至关重要。现代的低噪声mi-crowave放大器是建立在超导Josephson参数设备的基础上的,例如频率驱动的Josephson参数放大器(JPA),允许达到放大器的标准量子限制,甚至超越了它。当前的JPA是由超导量子干扰装置(Squid)与超导Coplanar波导谐振器相结合的。组合系统充当可调的非线性微波谐振器,其频率可以通过外部磁场在原位变化。机械类似物将是可变长度的摆,可以调整其本征频率。可以将非线性微波谐振器的可调节性通过在谐振频率的两倍的两倍上施加到参数上泵送JPA。这又可以导致出现在JPA处的弱量子信号的强大参数扩增。可以进一步利用相同的参数放大机制,以以挤压真空状态的形式生成真正的量子信号。在这种实践培训中,学生的使命是通过通过频道驱动的超导JPA进行实验研究量子量子限制的放大现象。This goal can be split in several parts: (i) analyze the magnetic field dependence of the JPA's resonance frequency via microwave transmission measurements with a Vec- tor Network Analyzer (VNA) and determine the JPA frequency modulation period in terms of the magnetic coil current, (ii) find a suitable working point for parametric amplification and record the corresponding resonance response, (iii) apply a microwave pump signal以适当的频率获得并测量实质性参数扩增的增益。
虽然本指南主要关注具有间歇性和/或基于逆变器(即风能、太阳能或电池储能)特征的发电设施,但本指南中的要求适用于所有出口 DER,无论采用何种技术,额定输出容量为 24 兆瓦(MW)或更低(每个应用),不包括净计量。净计量指南在其他地方列出。对于大于 24 MW 的 DER,将进一步研究确定是否可以容纳互连。指南中描述的互连参数基于良好的公用事业实践、行业标准、北卡罗来纳州公用事业委员会 (NCUC) 互连规则和程序以及弗吉尼亚州公司委员会的《管理小型发电机互连的规定》,这些规定定义并建立了标准化互连和操作要求,以确保 EPS 和 DER 的安全可靠运行。
至50%的流苏,天数至50%的丝绸和75%的干果皮显示出低的GCV和PCV值。大多数角色表现出较高的遗传力和特质,例如植物高度,流苏长度,耳长,编号每行,每行,COB重量和晶粒的产量均显示出高的GAM,其值范围为21.5%至101.30%。 所以,诸如编号之类的特征 每行,每行,棒棒的重量和谷物产量可用于进一步改善育种计划的作物。 除了花天至50%的流苏,天数至50%的天数以及75%的干果皮的天数与每只蛋白质的谷物产量呈正相关,表明针对特征选择的谷物产量呈正相关,而除外的特征将增强谷物的产量,而除其他性状的谷物特征与晶粒的显着性相关性与每co的谷物产量为负相关,这表明这些特征是这些特征的作品。 关键字:GCV; PCV;遗传力;遗传进步;相关性。 1。 引言玉米(Zea Mays L.)是小麦和米饭之后的第三次种植的谷物作物。 数百万人依靠玉米作为一种食品来源,动物饲料和工业的原材料。 此外,玉米在170多个国家中生长,生产1.147亿吨,超过193.7 MHA,当时为5.75 T HA -1生产率[1]。 据报道,到2050年,由于各种生物和非生物因素,对发展中国家的玉米需求将受到严重限制[2]。 为了应对未来的挑战,植物育种者将需要他们所能获得的所有遗传多样性。 但是,这不是必需的每行,每行,COB重量和晶粒的产量均显示出高的GAM,其值范围为21.5%至101.30%。所以,诸如编号每行,每行,棒棒的重量和谷物产量可用于进一步改善育种计划的作物。 除了花天至50%的流苏,天数至50%的天数以及75%的干果皮的天数与每只蛋白质的谷物产量呈正相关,表明针对特征选择的谷物产量呈正相关,而除外的特征将增强谷物的产量,而除其他性状的谷物特征与晶粒的显着性相关性与每co的谷物产量为负相关,这表明这些特征是这些特征的作品。 关键字:GCV; PCV;遗传力;遗传进步;相关性。 1。 引言玉米(Zea Mays L.)是小麦和米饭之后的第三次种植的谷物作物。 数百万人依靠玉米作为一种食品来源,动物饲料和工业的原材料。 此外,玉米在170多个国家中生长,生产1.147亿吨,超过193.7 MHA,当时为5.75 T HA -1生产率[1]。 据报道,到2050年,由于各种生物和非生物因素,对发展中国家的玉米需求将受到严重限制[2]。 为了应对未来的挑战,植物育种者将需要他们所能获得的所有遗传多样性。 但是,这不是必需的每行,每行,棒棒的重量和谷物产量可用于进一步改善育种计划的作物。除了花天至50%的流苏,天数至50%的天数以及75%的干果皮的天数与每只蛋白质的谷物产量呈正相关,表明针对特征选择的谷物产量呈正相关,而除外的特征将增强谷物的产量,而除其他性状的谷物特征与晶粒的显着性相关性与每co的谷物产量为负相关,这表明这些特征是这些特征的作品。关键字:GCV; PCV;遗传力;遗传进步;相关性。1。引言玉米(Zea Mays L.)是小麦和米饭之后的第三次种植的谷物作物。数百万人依靠玉米作为一种食品来源,动物饲料和工业的原材料。此外,玉米在170多个国家中生长,生产1.147亿吨,超过193.7 MHA,当时为5.75 T HA -1生产率[1]。据报道,到2050年,由于各种生物和非生物因素,对发展中国家的玉米需求将受到严重限制[2]。为了应对未来的挑战,植物育种者将需要他们所能获得的所有遗传多样性。但是,这不是必需的除了这种气候变化的预测外,还表明了对农业生产率的重大伤害,并且许多地区无法实现必要的长期粮食安全改善[3]。Landraces和Heirloom品种仍然由世界各地的农民种植,具有这种多样性[4]。人群的作物改善在很大程度上取决于人口个体中存在的遗传变异量。可变性是指植物种群个体之间存在差异。遗传变异性是通过传统和现代繁殖程序有效改善的最重要先决条件。遗传变异性是在某些遗传参数的帮助下估计的,例如基因型变异系数(GCV),表型变异系数(PCV)和遗传性。遗传力的估计提供了有关如何忠实地将某个遗传特征传给下一代的准确信息。遗传力估计与遗传进步相结合通常比仅遗传力估计更有用。
此处提供的信息是在接收者在使用前自行确定其用途适用性的条件下提供的。在任何情况下,Interface Polymers Limited 对于因使用或依赖此处信息或该信息所指产 品而导致的任何性质的损害不承担责任。此处所包含的内容不应被解释为建议使用任何与专利冲突的产品、工艺、设备或配方,且 Interface Polymers Limited 不对使用 这些内容是否侵犯任何专利作出任何明示或暗示的声明或保证