电池建模的中心步骤是识别模型参数。但是,参数的确定是时间耗尽,通常是次优的。强化学习提供了一种有希望的替代方案,其中代理通过交互和目标奖励来学习最佳参数。本学士学位论文的目标是对基于RL的参数确定的全面搜索和一个简单示例的实际实现。
可再生氢在盐洞中的储存需要快速注入和生产速率,以应对能源生产和消费之间的不平衡。这种操作条件引起了人们对盐洞穴的机械稳定性的担忧。为盐学选择适当的构成模型是研究此问题的重要一步,文献中已经介绍了许多具有多个参数的本构模型。但是,基于应力应变数据,可靠地确定哪个模型和哪个参数代表给定岩石的强大校准策略仍然是一个未解决的挑战。在社区中,我们首次提出了一个多步策略,以根据许多用于盐岩的变形数据集确定单个参数集。为此,我们首先开发了一个综合的构造模型,能够捕获瞬态,反向和稳态蠕变的所有相关非线性变形物理。然后,通过将校准过程作为优化问题来实现单个代表性材料参数的确定,并为其使用该问题。动态数据集成是通过多步校准策略来实现的,对于一次可用的一个实验。此外,我们的校准策略可以灵活地考虑岩石样品之间的轻度异质性,从而产生一组代表变形数据集的参数。我们的绩效分析结果表明,提出的校准策略是可靠的。作为对所提出方法的严格数学分析,缺乏相关的实验数据集,我们考虑了广泛的合成实验数据,灵感来自文献中现有的稀疏相关数据。此外,随着包含更多数据进行校准,模型的精度变得越来越好。