这项研究引入了创新的机器学习(ML)辅助采样方法,旨在更有效地扩展标准模型(BSM)参数空间。Markov Chain Monte Carlo(MCMC)和Hamiltonian Monte Carlo(HMC)等传统方法经常在高维,多模式空间中面临限制,从而导致计算瓶颈。我们的方法结合了积极训练的深层网络(DNN)和嵌套采样,动态预测更高的样子区域,以加速收敛并提高采样精度。这些可扩展的框架具有可扩展的框架,可以在高层物理学(HEP)研究中进行全面分析,以解决bsm compariete bsm commiate bsm commiate bsm compariate bsm compariate bsm comporiate comportiation comportiation comportiation。
任意分割模型 (SAM) 因提供强大且通用的图像对象分割解决方案而备受关注。然而,在不同场景下对 SAM 进行微调以用于下游分割任务仍然是一个挑战,因为不同场景的不同特征自然需要不同的模型参数空间。大多数现有的微调方法试图通过引入一组新参数来修改 SAM 的原始参数空间,以弥合不同场景之间的差距。与这些工作不同,在本文中,我们提出通过参数空间重构(SAM-PARSER)来有效地对 SAM 进行微调,其在微调过程中引入几乎为零的可训练参数。在 SAM-PARSER 中,我们假设 SAM 的原始参数空间相对完整,因此它的基能够重建新场景的参数空间。我们通过矩阵分解获得基,并通过基的最佳线性组合对系数进行微调以重建适合新场景的参数空间。实验结果表明,SAM-PARSER 在各种场景中表现出卓越的分割性能,同时与当前参数高效的微调方法相比,可训练参数的数量减少了约 290 倍。
数值模拟通常用于理解给定时空现象的参数依赖性。对多维参数空间进行采样并运行相应的模拟将产生大量时空模拟运行的集合。分析集合的主要目的是将多维参数空间划分(或分割)为具有相似行为的模拟运行的连通区域。为了促进这种分析,我们提出了一种用于多维参数空间分区的新型可视化方法。我们的可视化基于超切片器的概念,它允许不失真地查看参数空间段的范围和转换。对于参数空间内的导航,支持与参数空间样本的 2D 嵌入(包括它们的段成员资格)的交互。通过分析集合模拟运行的相似性空间,以半自动方式生成参数空间分区。相似模拟运行的集群会诱导参数空间分区的段。我们将参数空间分区可视化与集成模拟运行的相似空间可视化相链接,并将它们嵌入到交互式可视化分析工具中,该工具支持对时空模拟集成的所有方面的分析,其总体目标是分析参数空间分区。然后可以对分区进行可视化分析和交互式细化。我们将我们的方法与其他方法进行了比较,并与来自三个不同领域的案例研究中的专家一起对其进行了评估。© 2022 Elsevier BV 保留所有权利。