等效电路模型 (ECM)、电化学模型和经验退化模型 (EDM) 是常用的 SOH 估算模型。基于 ECM 的方法不研究电池内部复杂的物理化学反应过程,而是基于电路模型,采用滤波算法进行参数辨识,并更新模型参数进行 SOH 估算。例如,余 [3] 采用递归最小二乘 (RLS) 法辨识 ECM 的参数,然后采用自适应 H∞ 滤波算法估计 SOH。徐 [4] 也采用 RLS 辨识参数,然后估算 SOH。基于模型的方法虽然简单、计算成本低,但自适应性较差,且估算结果更多地依赖于参数辨识和滤波算法的有效性。
光伏系统最大功率输出与控制优化分析建立在准确可靠的光伏电池参数辨识基础上,但其高度非线性、多峰性等难题成为传统优化方法获取准确高效结果的障碍。本研究采用一种新型智能优化算法——MA(may fly algorithm,MA)对光伏电池三二极管模型(TDM)进行高效辨识,并以最小均方根误差(RMSE)作为评价指标验证算法的有效性。而且,通过不断调整MA的参数、种群数量和迭代次数来更好地平衡全局发展与局部优化的关系,从而获取更高效、更优的优化结果。研究案例表明MA在光伏电池参数辨识的准确性和稳定性方面优于其他元启发式算法。例如,MA 获得的 RMSE 的最小标准差 (SD) 比其他算法小 1,305 倍。
摘要 为满足多点运动参数测量的需求,机载分布式定位定向系统(POS)依赖于高精度主系统到从系统的传递对准来获取所有点的高精度运动参数。分布式POS的关键问题是确定一种适当处理飞行器挠曲的方法,实现高精度传递对准。本文首先分析了飞行器挠曲对机载对地观测传递对准精度的影响,在此基础上建立了考虑三维挠曲角的传递对准误差模型,提出了一种基于参数辨识无迹Rauch-Tung-Striebel平滑器(PIURTSS)的传递对准。仿真结果表明,基于PIURTSS的传递对准方法可有效提高估计精度。