测量方法。具体而言,可以根据压力传感器(压力传感器)获取的压力历史来计算爆震波的传播速度,或者记录自发光现象的高速视频以定位燃烧现象。除此之外,还需要获得RDRE内部爆震波本身的形状、燃料/氧化剂气体混合物的干涉模式等信息,这些信息无法使用常规方法确定,但却极其重要RDRE 的实际应用需要定量可视化测量。被称为纹影法和阴影图法的方法广泛用于可视化和测量流动,但为了获得定量信息,更适合采用可以测量干涉条纹的干涉测量法。在一般的干涉仪方法中,将从作为光源的激光器发射的激光束用作“物光束”(获取有关目标现象的信息)和“参考光束”(穿过目标现象并充当目标现象的信息)。产生干涉条纹的参考)。物体光传播与物体光相同的光路长度。此外,只有物光被引导到测量部分,参考光不允许出现任何现象,而是在成像装置之前重新集成为单光束,并且两束激光束处于同一位置。光路,产生干涉条纹并记录在设备上。如上所述,干涉仪法的光学系统通常比较复杂。另一方面,对于本研究中的测量目标RDRE来说,以双筒内传播的爆震波为测量目标,RDRE燃烧实验场地是一个开放空间,没有实验的辅助设备。考虑到该区域周围物体较多,且没有足够的空间安装光学系统,因此确定使用一般干涉仪进行视觉测量会很困难。 因此,在本研究中,我们确定“点衍射干涉仪”是合适的,它被归类为干涉测量方法中的“共光路干涉仪”,并且在成像装置之前分离物光束和参考光束。针对发动机燃烧实验,我们设计并制作了适用的点衍射干涉仪光学系统,并将其应用于RDRE燃烧实验。实现了以下目标。
全息图是一种基石表征和成像技术,可以应用于从X射线到无线电波甚至中子等颗粒的完整电磁频谱。所有这些全息方法中的关键特性是通过干扰参考光束来提取相信息所需的连贯性 - 没有此,全息摄影是不可能的。在这里,我们介绍了一种基于本质上不连贯和非极化的光束的全息成像方法,因此可以从经典的干扰测量中提取任何相信息。相反,全息信息是按照纠缠状态的二阶相干性编码的。使用空间偏振超倾斜光子对,我们远程重建复杂物体的相位图像。信息被编码为纠缠状态的极化程度,使我们能够通过动态相位障碍,甚至在存在强经典噪声的情况下进行图像,并且与经典相干全息系统相比,空间分辨率增强。超出成像,量子全息量量化了10 4
许多量子计算和通信协议 ( 1, 2 ) 的一个关键要求是将特定的光量子态作为信息处理的资源。下面,我们将关注传播光束的量子态,它可以通过光子计数或零差检测来分析,零差检测测量信号态与具有相对相位 θ 的强参考光束之间的干涉。这可以测量一个称为电场“正交分量”的物理量,与算符 ˆ x θ = ˆ xcosθ + ˆ psinθ 相关,其中 ˆ x 和 ˆ p 是正则共轭场可观测量。算符 ˆ x 和 ˆ p 类似于粒子的位置和动量,它们通常被称为“量子连续变量”(QCV)。根据海森堡不等式,它们不能以无限的精度同时确定,所以一般不能为电场定义一个适当的相空间密度Π(x, p)。然而,可以定义一个准分布W(x, p),称为维格纳函数,其边际函数产生概率分布P(xθ)。通过测量几个θ值的分布P(xθ),可以重建维格纳函数;这个逆过程称为量子层析成像(3)。
摘要 - 在最近推出的欧洲合作中,正在调查用于龙门和加速器(同步器)的内部离子治疗磁铁,在欧洲H2020 Hitri Plus和I.Fast计划的框架中,该合作已为超导磁铁提供了一些用于工作包的资金。超导磁体的设计和技术将用于离子治疗同步器,尤其是 - 尤其是龙门,作为430 MeV/nucleon离子(C-ION)的参考光束,具有10个离子/脉冲。磁体的直径约为60-90毫米,4至5 t峰值峰值,磁场的变化约为0.3 t/s,质量良好。本文将说明协作和技术计划的组织。各种超导体选项(LTS,MGB 2或HTS)和不同的磁铁形状,例如经典的Costheta或创新的Canted Costheta(CCT),具有弯曲的多功能(偶极子和四极管),在评估中,CCT为基线。这些研究应为现有设施的新超导龙门设计设计提供设计投入,并在更长的时间范围内,用于将新的强子治疗中心放置在东南欧(Seeiist Project)。
摘要 - 使用多模纤维用于越来越多的应用,例如光电信,内窥镜成像或激光束成型,这是一个上升趋势,这些应用需要了解纤维特性。在本文中,我们提出了一种新方法,用于从一组没有干涉测量的斑点输出模式中学习多模光纤的复杂传输矩阵。在第一步中,我们的方法找到了一个模型,可以预测多模纤维远端相干光束的强度模式。在第二步中,通过在远场中使用一些额外的强度图像来改进该模型,从而预测了实际的3D复合场,而无需使用参考光束,就可以预测离开多模纤维。我们的两步方法通过标准的50µm核直径踏板纤维在数值和实验上进行了验证,该纤维在1064nm时指导高达140 LP模式。在实验上,使用验证集,我们在近场和远场的纤维输出处获得了预测和真实斑点图像之间的相似性和98.5%的相似性,证明了检索到的复杂传输矩阵的准确性。最后,我们成功地在两个平面中同时证明了图像的投影,以证明复杂场塑造的证明。索引术语 - 机器学习,多模纤维,复杂传输矩阵,无参考方法,可变形镜