上下文。人口监测计划经常使用直接(例如实时捕获或聚光灯)或间接(例如发现的)观察结果,以估计人口丰度。但是,由于难以实现足够的相遇或检测率,这种方法通常不足以稀有,难以捉摸或隐性物种不足。Mala(Lagorchestes Hirsutus)是一位小型澳大利亚大巨像,被IUCN列为易受伤害,很难捕获,容易捕获肌病,并且在其茂密的栖息地中不易看到。因此,不能总是估计人口规模。使用分子标记物从非侵入性收集的样品中鉴定单个基因型正在越来越多地用于野生动植物保护中,并且可能是MALA的另一种方法。目标。这项研究的目的是评估非侵入性SCAT DNA采样的有效性,以估计MALA的种群丰度。方法。开发了一系列微卫星标记,以通过填充其SCAT来识别单个MALA。scat是从位于西澳大利亚州1100 ha围栏的野生马拉人口系统收集的。使用微卫星标记确定了单个基因型,并使用具有空间明确捕获的基因型估算了MALA的丰度 - 重新捕获(SECR)和Mark - 重新分析。关键结果。遗传标记物被证明是可变的,并且具有足够的排除能力,可以自久地识别独特的个体(平均基因座基因分型错误率:3.1%)。结论。SCAT抽样的个人遗传鉴定时,与传统标记一起使用 - 重新捕获/重新分析模型时,可提供可行的人口丰度估计。这是该MALA人群的首次可靠丰度估计,表明自2011年64个人最初重新引入64个人以来,人口大小> 70%。鉴于调查MALA的固有困难,这种方法对于确保对剩下的少数围栏和岛屿马拉人群的有效监测以防止这种脆弱物种的进一步下降是有价值的。含义。这是第一项研究,旨在鉴定MALA的物种特异性微卫星标记,并使用SCAT DNA的遗传捕获抽样来估计MALA种群的丰度。这项研究提供了对有价值的物种监测技术的评估,该物种可以应用于其他稀有,难以捉摸或神秘的威胁物种。
来自军官室:我们上次会议开始时听到的消息是,船友保罗·莱克 (Paul Lake) 已离开,开始执行永恒巡逻任务。保罗突发严重心脏病,所有人都会想念他。正是由于保罗的努力,我们现在才能在当前位置开会。我们正在寻找新的 COB。船友吉姆·尼尔森 (Jim Nelson) 不得不辞职。我们的宪法和细则中规定的 COB 职责是:“基地船长应负责确保有足够的会议场所供 Perch 基地定期开会。他还应安排必要的设备,并确保这些设备到位,以便举行此类会议。”如果您觉得您想帮助基地并站出来承担这一重要职位的责任,请联系任何军官室,您的愿望将被告知。说到寻找志愿者,我们正在寻找一些船友来站出来接管通讯。雷·萨姆森 (Ray Samson) 为基地所做的一切都让他忙得不可开交,他正在寻找一些替补。我们越能分散工作量,所有参与者就越轻松,而且参与其中仍然很有趣。我们计划在 4 月 20 日 1 小时举行一次野餐,这将是我们 4 月份的会议。移至第三个周末的原因是因为第 8 区会议将在
完整作者列表: Yamashita, Koji;丰桥技术科学大学电气和电子信息工程系 Sawahata, Hirohito;国立技术学院茨城学院 Yamagiwa, Shota;丰桥技术科学大学电气和电子信息工程系 Yokoyama, Shohei;TechnoPro, Inc.,TechnoPro R&D,公司 Numano, Rika;丰桥技术科学大学电子学跨学科研究所 (EIIRIS);丰桥技术科学大学应用化学与生命科学系 Koida, Kowa;丰桥技术科学大学电子学跨学科研究所 (EIIRIS);丰桥技术科学大学计算机科学与工程系 Kawano, Takeshi;丰桥技术科学大学电气和电子信息工程系
友永真一郎 名誉教授,东京教育大学前校长,因其在量子电动力学方面的基础性工作而荣获 1965 年诺贝尔物理学奖,该工作对基本粒子物理学产生了深远的影响。
Francis M. Rowney,1、2、13、* Georgina L. Brennan,3、4、13、14、* Carsten A. Skjøth,5 Gareth W. Griffith,6 Rachel N. McInnes,7 Yolanda Clewlow,7 Beverley Adams-Groom,5 Adam Barber,7 Natasha de Vere,6、8 Theo Economou,7、9 Matthew Hegarty,6 Helen M. Hanlon,7 Laura Jones,8 Alexander Kurganskiy,5、10 Geoffrey M. Petch,5 Caitlin Potter,6 Abdullah M. Rafiq,3 Amena Warner,11 PollerGEN 联盟、Benedict Wheeler,1、* Nicholas J. Osborne,1、12、* 和 Simon Creer 3,* 1 埃克塞特大学欧洲环境与人类健康中心,英国特鲁罗 TR1 3HD,皇家康沃尔医院 Knowledge Spa 2 普利茅斯大学地理、地球与环境科学学院,英国普利茅斯 PL4 8AA,德雷克马戏团 3 班戈大学自然科学学院,英国班戈 LL57 2UW,Deiniol 路 4 隆德大学生物系环境与气候科学/水生生态中心,瑞典隆德 223 62 5 伍斯特大学科学与环境学院,英国伍斯特 WR2 6AJ 6 阿伯里斯特威斯大学 IBERS,英国阿伯里斯特威斯 SY23 3FL 7 气象局,英国埃克塞特 EX1 3PB,Fitzroy 路 8 威尔士国家植物园,英国 Llanarthne SA32 8HN 9数学,埃克塞特大学,North Park Road,埃克塞特 EX4 4QF,英国 10 地理系,埃克塞特大学,Penryn 校区,Treliever Road,Penryn TR10 9FE,英国 11 英国过敏协会,Edgington Way,Sidcup DA14 5BH,英国 12 昆士兰大学公共卫生学院,Herston Road,布里斯班,昆士兰州 4006,澳大利亚 13 这些作者贡献相同 14 主要联系人 *通信地址:f.rowney@exeter.ac.uk (F.M.R.),g.l.b.doonan@gmail.com (G.L.B.),b.w.wheeler@exeter.ac.uk (B.W.),n.osborne@uq.edu。au(新泽西州), s.creer@bangor.ac.uk (南卡罗来纳州) https://doi.org/10.1016/j.cub.2021.02.019
fi g u r e 3推断出的蓝细菌16S rRNA丰度(GCN/g湿沉积物)与来自三个湖泊沉积物核心的高通量测序的时间。顶部面板按顺序显示分布,中间和底部面板分别显示了怀旧和chroocococcales中存在的属。数十年来,每个核心都在每个核心内汇总了丰度数据。白线代表每个彩色条内下一个最低分类学水平的细分(例如,属于顺序)。y轴是正方形的,以更好地可视化数据。如果顺序或属未知,则指示下一个最高的分类学分配。
• 此次合作将 JM 在氢能技术领域的创新科学与 Plug 在氢能和燃料电池以及电解器解决方案领域的领导地位结合在一起 • 这是 JM 成为燃料电池和电解器关键性能决定部件全球领先供应商的宏伟目标迈出的重要一步:JM 将满足 Plug 对这些先进材料的大部分需求 • 合作伙伴关系包括一项供应和联合开发协议,至少持续到 2030 年,涵盖从 2023 年起供应现有产品,以及燃料电池和电解器的未来几代技术 • 共同投资美国 5GW 的新制造产能,并将随着时间的推移扩大到 10GW,预计将于 2025 年开始生产。资本支出大致包含在 2024/25 年 10 亿英镑的集团资本支出指引内 • 预计将成为全球最大的 CCM(催化剂涂层膜)生产设施 • 合作伙伴关系支撑着氢能技术的目标销售额到 2024/25 年底超过 2 亿英镑,
Results: In primary outcomes, we found that a higher abundance of class Clostridia, family Family XI, genus Alloprevotella, genus Ruminiclostridium 9, and order Clostridiales predicted higher risk of CC, and a higher abundance of class Lentisphaeria, family Acidaminococcaceae, genus Christensenellaceae R7 group, genus Marvinbryantia, order维多利亚菌,肌动杆菌和小扁豆门预测CC的风险较低。在可验证的结果中,我们发现甲甲基类,家族放线菌科,家族甲状腺杆菌科,lachnospiraceae ucg属010,甲苯基菌科属,甲苯基逆葡萄菌属,命令放线菌和甲基甲基甲基菌属越高的风险和cccccund ccccccc,链球菌科,属媒介物和细菌植物属预测CC的风险较低,反之亦然。
多样化的农作物系统和受精策略,以增强土壤微生物组的丰度和多样性,从而稳定其有益的服务,以维持土壤生育能力和支持植物的生长。在这里,我们在欧洲(荷兰,比利时,德国北部)的三个不同长期现场实验中进行了评估,是否多样化的农作物系统和受精策略也影响了其功能性基因丰度。通过定量PCR分析土壤DNA,以量化细菌,古细菌和真菌以及与氮(N)转化有关的功能基因;包括细菌和古细菌硝化(AMOA -BAC,ARCH),分别降解过程的三个步骤(NIRK,NIRS和NOSZ -Cladei,II)和N 2 Asmimi with(NIFH)。作物多样化和受精策略通常增强了土壤总碳(C),N和微生物丰度,但地点之间的变化。多样化的农作物系统和受精策略对功能基因的总体影响要比细菌,古细菌和真菌的丰度强得多。基于豆类的农作物系统不仅在刺激N固定微生物的生长方面具有巨大的潜力,而且在增强N循环的下游功能潜力方面也具有巨大的潜力。基于高粱
摘要目的:分析墨西哥韦拉克鲁斯Tezonapa热带山地云森林(TMCF)的海拔梯度中的兰花丰度和多样性。设计/方法论/方法:在100×20 m临时样带中采样兰花,随机分布在海拔梯度中(T1800-900,T2 901-1,000,T31,001-1,100,T4,T41,101-1,200,和T5 1,101-1,200,和T5 1,101-1,300 M)。每个标本都是地理参数,鉴定了物种,并确定了保护状态。结果:该地区的多样性达到了16个属的26种兰花。记录了204个标本的护照数据。研究局限性/含义:T3记录了最大的丰度,丰富性和多样性。此结果符合TMCF中兰花发展所需的有利温度和湿度条件。发现/结论:Stanhopea Tigrina有灭绝的危险。因此,迫切需要以下方案:体外繁殖,个人释放到环境中以及野生种群的随访,以改善遗传改善。
