金属卤化物钙钛矿和钙钛矿相关的有机-无机杂化材料已成为一类重要的功能材料,具有广泛的应用,包括太阳能电池、发光二极管 (LED)、闪烁体等。通过控制有机和金属卤化物成分,这类杂化材料具有出色的结构可调性,这导致了分子水平上各种低维结构的发展,从准二维 (2D) 到层状二维、波纹二维、一维 (1D) 和零维 (0D) 结构。1 由于金属卤化物被有机成分隔离,这些材料中可以实现不同程度的电子带形成和结构扭曲,表现出与 3D 金属卤化物钙钛矿不同的独特光学和电子特性。2 例如,窄带发射
色心是晶体中的点缺陷,可为分布式量子信息处理应用提供通向长寿命自旋态的光学接口。色心量子技术面临的一个突出挑战是将光学相干发射器集成到可扩展的薄膜光子学中,这是在商业代工工艺内进行色心大规模光子学集成的先决条件。本文,我们报告了将近变换限制的硅空位 (V Si ) 缺陷集成到在 CMOS 兼容的 4 H -绝缘体上碳化硅平台中制造的微盘谐振器中。我们展示了高达 0.8 的单发射器协同性以及来自耦合到同一腔模的一对色心的光学超辐射。我们研究了多模干涉对该多发射器腔量子电动力学系统的光子散射动力学的影响。这些结果对于碳化硅量子网络的发展至关重要,并通过将光学相干自旋缺陷与晶圆可扩展的、最先进的光子学相结合,弥合了经典量子光子学之间的差距。
