在提供网格支持服务和RRO责任之间的全部不兼容范围尚未得到充分理解,因此在IESS规则更改最终确定时被低估了。例如,以前的观点假设在“集成资源提供商”注册方法下,电池存储可以净化与相应生成的任何负载。但是,实际上,定时不匹配仍然存在风险(例如指示电池在RRO责任窗口期间提供负载侧系统服务);而且没有考虑具有高频调度配置文件的较大电池系统的往返效率影响。这可以为电池运营商创建不必要的监控和管理,并具有可忽略的市场利益。
具有“写”和“读”功能的双向脑接口可以成为神经系统疾病基础研究和潜在临床治疗的重要工具。本文报道了一种微型多功能光纤光声发射器 (mFOE),它集成了同时进行的光声刺激用于“写”和神经回路的电生理记录用于“读”。由于神经元具有对声波作出反应的内在能力,因此不需要病毒转染。光声波和电场之间的正交性提供了一种避免电刺激和记录之间干扰的解决方案。首先使用钙成像在培养的大鼠皮质神经元中验证了 mFOE 的刺激功能。在长达 1 个月的急性和慢性应用中,在小鼠海马中体内应用 mFOE 成功同时进行了光声刺激和脑活动电记录。这些应用后证实了轻微的脑组织损伤。 mFOE 实现的同时神经刺激和记录功能为神经回路的研究开辟了新的可能性,并为超声神经刺激的研究带来了新的见解。
在这项新研究中,中国的团队通过添加可以直接向大脑反馈的技术为BCI设备带来了一个全新的维度,从而使其成为双向通信设备。团队指出,使BCI设备双向设备的全部要点是提高效率并允许其在更广泛的应用程序中使用。与常规BCI设备相比,他们声称新设备可提高效率100倍,并使能源需求减少约1000倍。
在3D医学图像中对感兴趣的器官进行分割是准确诊断和纵向研究的必要条件。尽管使用深度学习的最新进展已显示出许多细分任务的成功,但是高性能需要大的数据集,而注释过程既耗时又耗时。在本文中,我们提出了一个3D少数射击分割框架,以使用目标器官注释的有限训练样本进行准确的器官序列。为了实现这一目标,像U-NET一样的网络旨在通过了解支持数据的2D片与查询图像之间的关系,包括辅助门控复发单元(GRU),该单元(GRU)了解相邻切片之间编码特征的一致性。此外,我们会介绍一种传输学习方法,以通过在支持数据中采样的任意支持和查询数据进行测试之前对模型进行更新,以适应目标图像和器官的特征。我们使用带有不同器官注释的三个3D CT数据集评估了我们提出的模型。我们的模型比最先进的射击分段模型产生了显着提高的性能,并且与经过更多目标培训数据训练的完全监督模型相当。
内科系III(N Perakakis MD教授,C Steenblock PD,W Kanczkowski,B Ludwig教授,M Gado,M Gado,A Linkermann教授,P nawroth教授,Pr. s r Bornstein); Paul Langerhans Institute Dresden,Helmholtz Munich(N Perakakis,B Ludwig,M Solimena教授,M Gado,M Gado,T Chavakis教授,S R Bornstein);临床化学与实验室医学研究所(V I Alexaki,P Mirtschink教授,T Chavakis);分子糖尿病学系(M Solimena);儿科系(N TOEPFNER PD);再生疗法中心德累斯顿(B Ludwig,seissig教授);医学微生物学和病毒学(H Harb教授);医学系医学院,医学院和大学医院卡尔·古斯塔夫·卡鲁斯(Carl Gustav Carus),德累斯顿德累斯顿(Dresden),德累斯顿(Dresden)01307,德国(S Zeissig);德国德国德国糖尿病研究中心(N Perakakis,B Ludwig,M Solimena,M Solimena,M Gado,T Chavakis,S R Bornstein);医学病毒学研究所(B G Hale教授,A Abela,M Huber PD,A Trkola教授);流行病学,生物统计学和预防研究所(M a Puhan教授);瑞士苏黎世苏黎世大学分子生命科学系(W-L Wong教授);病理学和分子病理学系(Z VARGA教授);传染病和医院流行病学系(A Abela,A s Zinkernagel教授);和内分泌,糖尿病学和临床部
摘要。最近,储能已成为可再生能源电力系统应用的重要课题。电池是可再生能源、电动汽车和电网连接系统采用的最受欢迎的储能设备之一。在这种情况下,双向 DC-DC 转换器 (BDC) 通过控制电池应用中电池的充电和放电阶段实现双向功率流。因此,考虑到电池的充电状态和电流方向,通过 BDC 的占空比来调节电池电流。在本研究中,设计、分析和模拟了一种具有降压和升压工作原理的非隔离 BDC,并在各种案例研究下进行模拟。在设计的系统中,BDC 控制电池和直流链路之间的双向功率流。具体而言,在降压模式下运行的电池充电阶段,直流链路为电池供电,BDC 使用比例积分 (PI) 控制器调节电池电流。另一方面,在升压模式下电池的放电阶段,当直流电源断开时,电池为直流负载供电,直流母线电压由 BDC 通过 PI 控制器控制。仿真结果显示了不同情况下 BDC 的运行和控制。
随着电气化超越小型乘用车,进入公共汽车,半卡车和车队车辆,网格所需的功率将大大增加。根据ICCT的说法,到2030年,中型和重型车辆预计每天将每天增加140,000兆瓦时的能耗。大部分需求将沿着国家高速公路货运网络(NHFN)进行长途卡车运输,并且在采用加利福尼亚州先进的清洁卡车规则的州。有助于减轻电网的潜在压力,政府和行业正在寻求利用电动汽车电池中存储的能量,以通过从车辆到网格(V2G)出口电源来帮助稳定电网。加利福尼亚州有大约100万辆电动汽车,正在考虑如何通过立法加速V2G技术。
集成的神经元和电极可介导与神经元的有效电化学通信。我们的大脑拥有无数的突触,它们是快速信号传输和处理的复杂单元。突触是神经元的一个亚细胞区域,它通过将神经递质从突触前末端扩散到突触后膜,跨越约 20 纳米的窄带,实现有效的神经元间化学信息传递。1 电化学神经接口的一个有前途的研究方向是开发利用大脑内源性机制(如突触传递)传输信号的方法。将突触与外部设备集成的神经接口子类可称为突触接口。尽管突触接口尚处于开发早期阶段,但由于其与生物突触相似,因此有望实现稳健、有效的双向通信。这是电化学神经接口的众多新兴趋势之一,该接口采用生物混合策略来增强与生物系统的接口。2
摘要 — 本文介绍了一种采用 65 nm CMOS 技术的数字可编程双向 7 位无源移相器。该无源矢量合成移相器的核心是混合正交发生器 (HQG)、级间匹配网络和无源矢量调制器 (PVM)。本文提出了一种基于高耦合因子的正交发生器设计方法,并用紧凑型垂直变压器进行了演示。提出了 HQG 和 PVM 之间的级间匹配网络,以释放带宽瓶颈并实现 34% 的分数频率带宽。I 和 Q 路径中的两个 6 位 X 型衰减器形成高分辨率 12 位控制字。在 32-40 GHz 下,这个 7 位 360 ◦ 移相器实现了测量的 2.8 ◦ 步长,相位误差为 0.45-1.6 ◦ RMS,幅度误差为 0.2-0.36 dB RMS。采用宽带技术,其3dB带宽达到30.2-42.7GHz,相位误差为2.8◦RMS。其带内1dB压缩点为10.2dBm。采用所提出的紧凑型HQG和PVM,该毫米波无源移相器仅占用220×630μm2,并且没有功耗。
1 印度布巴内斯瓦尔 KIIT 大学电子工程学院 2 捷克共和国皮尔森西波西米亚大学电气工程区域创新中心 3 印度布巴内斯瓦尔 KIIT 大学电气工程学院 venkata.yanna@gmail.com、kumarbvv@rice.zcu.cz、bvvs.kumarfet@kiit.ac.in、drabek@ieee.org、madhuflo@gmail.com 摘要 – 本文提出了一种软开关双向 DC-DC 转换器。为了实现软开关条件 ZVS 开启/ZCS 关断,辅助电路(包括开关、电容器、二极管和小电感器)适用于双向转换器。无论功率传输如何,此转换器均可实现软开关特性。由于辅助电路的存在,开关损耗减少,从而提高了整体效率。开关器件实现ZVS开通和ZCS关断操作,而变换器分别工作在升压和降压模式。描述了其工作原理并通过仿真分析验证了软开关特性。通过仿真分析验证了所提出的100V/340V/650W变换器系统。