引言双胞胎是响应外部刺激的材料的最常见结构转换之一,包括机械载荷(1),电子束或离子照射(2,3),激光震动(4)和加热(5)。纳米晶体可能会产生较高的特性,例如优异的机械强度(6),改善的热稳定性(7),高电导率(8),显着的光发射(9)和增强的催化活性(10)。了解纳米晶体中的孪生机制可以使纳米材料具有所需特性的结构工程。传统的智慧认为,双胞胎通过在相邻原子平面上的部分位错的一层移动来进行(11)。在外部机械载荷下的孪生二胎涉及非常规的机制,被描述为部分位错的随机激活(12),同时激活部分位错(13)或洗牌机制(14)。转化孪生型对不太了解。假定纳米晶体的转化是通过传统变形孪生机制进行的(11)。但是,该主张缺乏直接证据。转化双胞胎需要外部能量才能克服能量屏障(2-5)。注入外部能量(15,16),例如在热退火和电子或离子辐照过程中,为纳米晶体中的双胞胎形成提供了机会。这表明纳米晶体的双胞胎可能表现出受动力学控制的非常规途径。但是,由于部分脱位/滑移的速度被认为是按时间尺度出现的速度(17),因此同时意识到双重激发和原子成像仍然是技术挑战。在这项工作中,以面部为中心的立方铅(PB)纳米颗粒作为模型系统,我们使用
最近,我们描述了一个调节系统,该系统允许在较高的真核细胞系(1),植物(2)和动物(3,4)中严格控制单个基因活性。该系统的基本组件是(i)一个RNA聚合酶H最小启动子,放置在多个操作序列(TETO)的下游,其大肠杆菌tnjo Tetracycline抗性操纵子和(ii)TET抑制剂(TET)(TETR)和Simples Simples Simplex Virus Protein 16(vpp16(vp p p p)(ii)(ii)(ii)融合。在不存在四环素(TC)的情况下,TTA与TET算子结合以激活最小启动子的转录,而在TC存在下,它的关联并因此阻止了其转录激活。在TTA结合后,源自巨细胞病毒IE启动子(PHCMV,5)的最小启动子,并融合到七个TETO序列中,当在短暂性表达测定中进行比较时,在HELA细胞中的父启动子的明显强度达到了显着的强度(6)。TTA的高激活潜力及其结合位点在PHCMV*_1 [(1)中的排列;参见图ia]建议设计双向启动子,该设计将允许同时调节来自中心位置多个TETO序列的两个转录单元(图la)。这样的启动子对于多种实验方法应该有用。首先,它可以允许以化学计量量的两种基因产物的合成,这通常是产生异二聚体(或异源 - 寡聚)蛋白的先决条件。在这里,我们报告了双向启动子的构建(PBI-L;图第二,通过将不同效率的最小启动子融合到中心位置的TETO序列,可以在不同但定义的水平上共同调节两个基因产物。第三,通过在双向启动子的一侧整合适当的报告基因,可以通过报告基因函数来监测对不可读基因的调节。后一种可能性也可能有助于在细胞和有机水平上 - 筛选正确整合的表达单元,以控制感兴趣的基因。1a)表明,该启动子以定量方式共同调节了编码P-半乳糖苷酶和荧光素酶的两个报告基因。此外,我们描述了一个矢量系列,很容易允许将PBI-I用于各种目的。图1a所示的广义发散转录单元由基因X的双向启动子组成,然后是
注意:本设备已经过测试,符合 FCC 规则第 15 部分中 B 类数字设备的限制。这些限制旨在为住宅安装提供合理的保护,防止有害干扰。本设备会产生、使用并辐射射频能量,如果不按照说明进行安装和使用,可能会对无线电通信造成有害干扰。但是,不能保证在特定安装中不会发生干扰。如果本设备确实对无线电或电视接收造成有害干扰(可通过关闭和打开设备来确定),建议用户尝试通过以下一种或多种措施来纠正干扰:
CA9306 器件是带有使能输入的双双向 I 2 C 和 SMBus 电压电平转换器,可在 1.2V 至 3.3VV REF1 和 1.8V 至 5.5VV REF2 的范围内工作。CA9306 器件允许在无需方向引脚的情况下在 1.2V 和 5V 之间进行双向电压转换。开关的低导通电阻 (RON) 允许以最小的传播延迟进行连接。当 EN 为高电平时,转换器开关处于导通状态,SCL1 和 SDA1 I/O 分别连接到 SCL2 和 SDA2 I/O,从而允许端口之间的双向数据流。当 EN 为低电平时,转换器开关处于关闭状态,端口之间存在高阻抗状态。CA9306 器件可用于将 400kHz 总线与 100kHz 总线隔离,方法是控制 EN 引脚在快速模式通信期间断开较慢的总线,并进行电压转换。可用封装:MSOP-8、DFN3x4-8、DFN2x3-8 封装。
1 威斯康星大学密尔沃基分校可持续电能系统中心,美国密尔沃基 2 土耳其安卡拉加齐大学技术学院电气与电子工程系 jeanpie4@uwm.edu;aie@uwm.edu;naltin@gazi.edu.tr;nasiri@uwm.edu 收稿日期:2020 年 4 月 10 日 接受日期:2020 年 6 月 22 日 摘要 - 近年来,用于并网应用的结合光伏 (PV) 系统和集成储能的分布式发电厂的研究兴趣日益增加。然而,多种能源的组合需要大量的 DC-DC 转换器,因此变得更加复杂。为了解决这个问题,本研究提出了一种用于并网应用的多端口双向 DC-DC LLC 谐振转换器。为了最大限度地降低所提系统的控制复杂性,还开发了一种基于区域的控制器方法,该方法集成了基于增量电导法的改进最大功率点跟踪 (MMPPT) 方法。该控制器能够在从公用电网输送或获取电力时调节转换器电压和功率流。本研究中介绍的转换器包含一个双向降压-升压转换器和一个 LLC 谐振转换器,以及一个电压源并网逆变器。它们都与 PV、电池和公用设施连接。通过 MATLAB/Simulink 进行的大量仿真分析证明了所提拓扑的运行。
摘要 — 单芯片双向脑机接口 (BBCI) 通过同时进行神经记录和刺激来实现神经调节。本文介绍了一种原型 BBCI 专用集成电路 (ASIC),该集成电路由 64 通道时分复用记录前端、面积优化的四通道高压兼容刺激器和支持同时进行多通道刺激伪影消除的电子设备组成。刺激器电源集成在芯片上,通过谐振电荷泵从低压电源提供 ± 11 V 的顺从电压。高频 (∼ 3 GHz) 自谐振时钟用于减少泵送电容器面积,同时抑制相关的开关损耗。基于 32 抽头最小均方 (LMS) 的数字自适应滤波器可实现 60 dB 的伪影抑制,从而实现同时进行神经刺激和记录。整个芯片采用 65 纳米低功耗 (LP) 工艺,占地 4 平方毫米,由 2.5/1.2 V 电源供电,记录时功耗为 205 µ W,刺激和消除后端功耗为 142 µ W。刺激输出驱动器在最大输出功率为 24 mW 时可实现 31% 的直流-直流效率。
双向充电能力将很快提供更多的电动汽车(EV)模型,但是该技术的市场吸引力和经济潜力在很大程度上是未知的,并且有广泛的争论。中国是最大的电动汽车市场,也正处于分布式屋顶PV的主要建立之中。这两种趋势都是相对较新的:在短短三年内,汽车销售的EV份额已从5%上升到35%以上,而屋顶太阳能直到最近才成为该国可再生能源扩张的主要因素。这两种趋势的重新度,再加上双向充电在市场上的即将到来,使得及时评估将这三种技术相结合的潜力:PV,热泵和双向充电作为启用家庭电气化的能源存储解决方案。
量子电池(QB)利用量子效应来存储和供应能量,这可能超过其经典的对应物。但是,该领域有两个挑战。一个是,环境诱导的破坏性会导致QB的能量损失和衰老,另一个是随着距离的增加,充电器-QB耦合强度的降低会使QB充电效率低下。在这里,我们提出了QB方案,通过将QB和充电器耦合到矩形空心金属波导,实现遥控器。发现,只要在波导中由QB,充电器和电磁环境组成的总系统的能量谱中形成两个结合状态,就可以实现理想的充电。使用破坏性的建设性作用,我们的QB对衰老是不受欢迎的。另外,在不诉诸直接充电器QB相互作用的情况下,我们的方案以远程和无线的充电方式起作用。有效克服了这两个挑战,我们的结果为Reservoir Engineering实现了QB的实践提供了有见地的指南。
电动汽车(EV)是脱碳行业的关键组成部分。因此,采用电动汽车必须对最终用户具有吸引力,这就是为什么本文探讨了从2024年到2030年在德国在用户的角度来关注利益和潜在客户的智能和双向充电用例的原因。评估了光伏(PV)自我消费优化,峰值剃须,可变关税和直接市场交易的用例。多标准评估包括各自技术系统的技术准备,用例获利能力以及每个用例使用现实数量的潜在电动汽车使用者。我们的发现表明,今天没有调查的用例似乎已经准备好进行大规模实施。对于智能充电,从用户的角度来看,第一个在技术上可扩展和有利可图的用例是PV自消费优化和峰值剃须。双向充电在及时以后在技术上成熟。第一个双向充电案例的大规模实施可能始于2025年底。所有调查的用例都预计将在2030年左右左右获得盈利,利润范围不到100欧元,至每EV和年份超过2,000欧元。
通过提出一个新模型,可以计算出器件电流均方根和平均电流以及电感/变压器电流均方根和峰值的方程,从而提高双向双有源桥 (DAB) 直流-直流转换器的效率。这些方程有助于预测器件和无源元件中的损耗,并有助于转换器设计。在考虑缓冲电容器对 DAB 转换器的影响的同时,还分析了降压和升压模式下的零电压开关 (ZVS) 边界。所提出的模型可用于预测任何所需工作点的转换器效率。新模型可作为 DAB 硬件设计(器件和无源元件选择)、软开关工作范围估计和设计阶段性能预测的重要教学兼研究工具。DAB 直流-直流转换器的运行已通过大量模拟验证。基于所提出的模型设计了一个 DAB 转换器原型,并用于航空航天储能应用。实验结果验证了新模型在 7 kW、390/180 V、20 kHz 转换器运行和 ZVS 边界运行中的有效性。