ML7.a “生物制剂”或放射性物质,经选择或改造,可提高其对人类或动物造成伤害、损坏设备或破坏农作物或环境的效力。ML7.e 为军事用途而专门设计或改造的设备、为传播上述任何 ML7 条目而设计或改造的设备,以及为其专门设计的部件。ML8 “高能材料”和相关物质,已“分类”。ML8.a.4 CL-20(HNIW 或六硝基六氮杂异伍兹烷)(CAS 135285-90-4)。ML8.a.13.a HMX(环四亚甲基四硝胺、八氢-1,3,5,7-四硝基-1,3,5,7-四嗪、1,3,5,7-四硝基-1,3,5,7-四氮杂环辛烷、奥克托今或奥克托今)(CAS 2691-41-0)。ML8.a.21.a RDX(环三亚甲基三硝胺、cyclonite、T4、六氢-1,3,5-三硝基-1,3,5-三嗪、1,3,5-三硝基-1,3,5-三氮杂环己烷、黑索今或黑索今)(CAS 121-82-4)。ML8.b.5 复合和复合改性双基推进剂。ML8.c.3 硼烷。ML8.c.10 液态高能量密度燃料。ML8.c.5.a.1 铍(CAS 7440-41-7),颗粒大小小于 60 µm。ML8.c.7 与粉末金属或其他高能量燃料成分复合的高氯酸盐、氯酸盐和铬酸盐。ML8.c.11.b 镁、聚四氟乙烯 (PTFE) 和偏二氟乙烯-六氟丙烯共聚物(例如 MTV)的混合物。ML8.d 以下氧化剂及其“混合物”:
摘要:真菌 - 细菌组合在各种压力条件下提高和改善植物健康方面具有重要作用。真菌和细菌分泌的代谢产物在此过程中起着重要作用。我们的研究强调了单独的真菌Serendipita Indica分泌的继发代谢产物和Zhihengliuella sp。istpl4在正常生长条件下和砷(AS)应力条件下。在这里,我们评估了单独的S. Indica和Z. sp。的砷差异能力。ISTPL4在体外条件下。 S. indica和Z. sp的生长。 istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。 代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。 同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。 ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在体外条件下。S. indica和Z. sp的生长。istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4。共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在2.4 mm浓度为As。砷高于此浓度,导致孢子产生和菌丝碎裂。扫描电子显微镜(SEM)结果表明,在存在Z. sp。除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4(18±0.75 µm)与单独的s。在正常生长条件下(14±0.24 µm)相比。我们的研究得出的结论是,微生物财团的建议组合可用于通过打击生物胁迫和非生物压力来增加可持续农业。这是因为微生物组合释放的代谢产物显示抗真菌和抗菌特性。因此,选择财团和组合伙伴的选择很重要,可以帮助制定应对压力的策略。
摘要:真菌 - 细菌组合在各种压力条件下提高和改善植物健康方面具有重要作用。真菌和细菌分泌的代谢产物在此过程中起着重要作用。我们的研究强调了单独的真菌Serendipita Indica分泌的继发代谢产物和Zhihengliuella sp。istpl4在正常生长条件下和砷(AS)应力条件下。在这里,我们评估了单独的S. Indica和Z. sp。的砷差异能力。ISTPL4在体外条件下。 S. indica和Z. sp的生长。 istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。 代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。 同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。 ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在体外条件下。S. indica和Z. sp的生长。istpl4以不同的砷浓度测量,砷对使用共聚焦杂志和扫描电子显微镜确定了砷对孢子大小和形态的影响。代谢组学研究表明,单独在正常生长条件下单独进行识别链球菌,在应力下释放五核酸,甘油三酸甘油三酸酯 - 已故,L-丙啉和环链(L-丙酰L-谷氨酸)。同样,D-核糖,2-脱氧 - 双基(硫代) - dithiocetal是通过S. indica和Z. sp的组合分泌的。ISTPL4。 共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。 ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4。共聚焦研究表明,与Z. sp结合使用时,孢子虫的孢子大小在1.9 mm时降低了18%,在1.9 mm时降低了15%。ISTPL4在2.4 mm浓度为As。 砷高于此浓度,导致孢子产生和菌丝碎裂。 扫描电子显微镜(SEM)结果表明,在存在Z. sp。 除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4在2.4 mm浓度为As。砷高于此浓度,导致孢子产生和菌丝碎裂。扫描电子显微镜(SEM)结果表明,在存在Z. sp。除了逃避压力外,代谢产物还提供了其他生存策略。ISTPL4(18±0.75 µm)与单独的s。在正常生长条件下(14±0.24 µm)相比。我们的研究得出的结论是,微生物财团的建议组合可用于通过打击生物胁迫和非生物压力来增加可持续农业。这是因为微生物组合释放的代谢产物显示抗真菌和抗菌特性。因此,选择财团和组合伙伴的选择很重要,可以帮助制定应对压力的策略。
尽管自第一版出版以来,雷达的基本原理几乎没有变化。新的雷达功能不断发展,雷达技术和实践也不断改进。这种发展使得必须进行大量修订,并引入原版中没有的主题。其中一个主要变化是对 MTI(移动目标指示)雷达的处理(第4 章)。已添加的大多数基本 MTI 概念在第一版出版时就已经为人所知,但它们尚未出现在公开文献中,也没有在实践中得到广泛应用。将其纳入第一版将主要是学术性的,因为当时可用的模拟延迟线技术无法构建理论上可行的复杂信号处理器。然而,后来数字技术的进步(最初是为雷达以外的应用而开发的)已使基本 MTI 理论所指出的多个延迟线消除器和多个脉冲重复频率 MTI 雷达得以实际实施。自动检测和跟踪,或称 ADT(第 5.0 和 10.7 节)是另一项重要发展,其基本理论已为人所知,但其实际实现必须等待数字技术的进步。ADT 的原理在 20 世纪 50 年代初得到验证,使用真空管技术,作为麻省理工学院林肯实验室开发的美国空军 SAGE 防空系统的一部分。这种形式的 ADT 体积庞大、价格昂贵且难以维护。然而,20 世纪 60 年代末固态微型计算机的商业化使 ADT 变得相对便宜、可靠且体积小,因此几乎可以用于任何需要它的监视雷达。另一个得到很大发展的雷达领域是电子控制相控阵天线。在第一版中,雷达天线是主题或单独的一章。在这一版中,有一章介绍了传统雷达天线(第7 章),还有一章介绍了相控阵天线(第8 章)。用一章来介绍阵列天线更多的是出于兴趣,而不是对广泛应用的认可。有关雷达杂波的章节(第章)已重新组织,以包括在杂波存在下检测目标的方法。一般而言,在杂波背景中检测目标所需的设计技术与在噪声背景中检测目标所需的设计技术有很大不同。当前版本中新增或发生重大变化的其他主题包括低角度跟踪、“同轴”跟踪、固态射频源、镜面扫描天线、天线稳定、相控阵的计算机控制、固态双工器、CF AR、脉冲压缩、目标分类、合成孔径雷达、超视距雷达、对空监视雷达、测高仪和 30 雷达以及 ECCM。双基地雷达和毫米波雷达也包括在内,尽管它们的应用已经