摘要:本文设计了高性能NiO/β-Ga 2 O 3 垂直异质结二极管(HJD),其具有由两层不同长度的p型NiO层组成的双层结终端扩展(DL-JTE)。底部的60 nm p-NiO层完全覆盖β-Ga 2 O 3 晶片,而上部60 nm p-NiO层的几何形状比方形阳极电极大10 μm。与单层JTE相比,双层JTE结构有效抑制了电场集中,使击穿电压从2020 V提高到2830 V。此外,双p型NiO层允许更多空穴进入Ga 2 O 3 漂移层,降低了漂移电阻,比导通电阻从1.93 mΩ·cm 2 降低到1.34 mΩ·cm 2 。采用DL-JTE结构的器件功率因数(PFOM)达到5.98 GW/cm 2 ,是传统单层JTE结构的2.8倍。这些结果表明,双层JTE结构为制备高性能Ga 2 O 3 HJDs提供了一种可行的方法。
简介。扭曲的双层石墨烯(TBG)的能带具有四倍的自旋 - valley avor变性。As a magic twist angle near θ = 1 ◦ is approached, the two sets of four-fold degenerate bands closest to the neutral system Fermi energy approach each other and narrow [ 1 ], converting graphene from a weakly correlated Fermi liquid to a strongly correlated system [ 2 – 5 ] with a rich variety of competing states, including superconductors, insulating flavor ferromag- nets, and metallic avor ferromagnets。铁磁性让人联想到量子厅政权中的伯纳尔堆积的双层石墨烯[6-13],现在已经清楚地确立了[3、5、14-32]作为魔术扭曲扭曲的毛层石化烯(Matbg)的重要组成部分。与量子大厅的情况形成鲜明对比的,其中八个Landau带被依次填写以最小化交换能量,MATBG地面状态似乎不会在CN附近的一系列填充因子中没有任何损坏的对称性,并且在断裂的对称状态下保持了量不足的状态,以保持范围内的fling fling fling fling fling fling fling fling( ν∗ h和ν∗ e是最大孔和电子填充因子。 [νf。(n f -m) / m,其中n f是带有avor f和m的频带电子的数量是系统中的moiré细胞的数量; ν=fνf。] 在这封信中,我们从弱耦合点中解决了MATBG相关物理的一些异常方面,其中八个Landau带被依次填写以最小化交换能量,MATBG地面状态似乎不会在CN附近的一系列填充因子中没有任何损坏的对称性,并且在断裂的对称状态下保持了量不足的状态,以保持范围内的fling fling fling fling fling fling fling fling( ν∗ h和ν∗ e是最大孔和电子填充因子。[νf。(n f -m) / m,其中n f是带有avor f和m的频带电子的数量是系统中的moiré细胞的数量; ν=fνf。]在这封信中,我们从弱耦合点
2D超材料具有巨大的声音,光学和电磁应用,因为它们的独特特性和符合弯曲底物的能力。主动的超材料吸引了显着的研究注意力,因为它们的按需调谐特性和表现通过形状的重新配置。2D主动超材料通常通过内部结构变形实现活动性能,从而导致整体维度的变化。这需要对构象基材的相应更改,或者超材料无法提供完整的区域覆盖范围,这可能是其实际应用的显着限制。迄今为止,以不同形状的重新配置来实现具有区别的活跃2D超材料仍然是一个巨大的挑战。在本文中,介绍了磁机械双层超材料,以证明具有区域保护能力的面积密度可调性。双层超材料由两个具有不同磁化分布的磁性软材料组成。在磁场下,每一层的表现都不同,这使超材料可以将其形状重新构成多种模式,并显着调整其面积密度而不改变其整体尺寸。保护区域的多模式形状重新构造被进一步利用为主动声波调节剂,以调整带隙和波传播。因此,双层方法为更广泛的应用提供了保护区域主动超材料的新概念。
离子阱系统是量子信息处理的主要平台,但目前仅限于一维和二维阵列,这限制了它们的可扩展性和应用范围。本文,我们提出了一种克服这一限制的方法,通过证明 Penning 阱可用于实现非常干净的双层晶体,其中数百个离子自组织成两个明确定义的层。这些双层晶体是通过加入非谐波捕获势来实现的,这在现有技术下很容易实现。我们研究了该系统的正常模式,发现了与单平面晶体模式相比的显著差异。双层几何形状和正常模式的独特性质开辟了新的机会——特别是在量子传感和量子模拟方面——这在单平面晶体中并不简单。此外,我们说明了可以扩展这里提出的想法来实现具有两层以上的多层晶体。我们的工作通过有效利用所有三个空间维度来增加捕获离子系统的维数,并为利用多层三维捕获离子晶体进行新一代量子信息处理实验奠定了基础。
自从石墨烯 (tBLG) 被发现以来,各种新奇的物理现象被揭示出来,例如独特的电子特性。 [3] 特别是,根据扭曲角度 (θ),具有低θ(1.1至5°)的tBLG表现出不同的物理特性,例如莫特绝缘,超导和异常导电行为,这些特性引起了更多的关注。 [4] 此外,tBLG还被发现在电化学,手性和慢等离子体中发挥着重要作用。 [5] tBLG已成为探索物理性质和寻找新应用的有力模型。 因此,可控制备θ范围为0至30°的高质量tBLG是一项艰巨的挑战。 目前,tBLG的制备主要依赖于人工堆叠的方法,例如堆叠单层石墨烯和折叠单层石墨烯。 [6] 但多次转移过程形成的污染和褶皱不可避免地影响tBLG的耦合质量,降低其固有的物理性能。此外,在超高真空条件下,通过热Si升华在氢刻蚀的6H-SiC(000-1)衬底上制备了tBLG。[7] 但这种方法成本不高,并且需要复杂的石墨烯转移程序。化学气相沉积(CVD)被认为是一种制备高质量石墨烯的简便、可扩展的方法[8],其中Cu和Ni被广泛用作直接生长石墨烯的基底。然而,由于Cu中碳含量低,除非采用复杂的工艺,否则很难以Cu为催化剂制备多层石墨烯。[9] 此外,虽然已经利用Cu-Ni合金作为基底来控制石墨烯层的生长,但是很难打破AB堆叠石墨烯的对称性来形成扭曲石墨烯。[10] 最近,Sun等人[11] 在石墨烯层转移过程中,引入了碳和碳键,从而实现了石墨烯的转移。报道了一种在低压 CVD 系统下引入气流扰动的异位成核策略,用于在 Cu 箔上生长石墨烯畴。[11] 因此,迫切需要找到一种简单的方法来制备具有大扭曲角度范围窗口的高质量石墨烯畴,这对于探索石墨烯畴的独特性能非常关键和必要。在本文中,我们开发了一种在环境压力下在液态 Cu 基底上制备石墨烯畴的简便方法。在高于固态 Cu 熔点(1083 ° C)的生长温度下,在液态 Cu 表面生长的石墨烯畴保持对齐取向。通过调节生长温度,对齐状态被打破,在液态 Cu 上生长的石墨烯畴在表面下移动和旋转
先进晶圆级封装的一个重要方面是使用临时晶圆键合 (TWB) 材料和工艺,使部分处理过的晶圆即使在极高的温度和高真空条件下也能承受各种后续步骤。如果要求他们描述能够节省时间和金钱同时保持最佳性能的“理想” TWB 材料解决方案,许多制造商会要求使用可以在室温下应用和键合的材料,并且可以在热压键合 (TCB) 步骤中操作减薄晶圆时提供保护。这些材料还应具有足够的柔韧性,以支持不同的固化选项,同时保持设备功能的完整性。同时,材料应能够使用各种分离技术将减薄晶圆从载体上分离。
在MOS 2效应晶体管中,与迁移率或数量依赖性关系相关的电流或电压闪烁是由低频噪声的特征。这种噪声通常可用于评估基于MOS 2的电子设备的应用限制。在这项工作中,通过化学蒸气沉积(CVD)生长的单晶双层MOS 2的低频噪声特性是系统地进行投资的,并发现与基于单层MOS 2通道的低频噪声MOS 2相比,可提供显着的性能改进。在F¼100Hz时,归一化的漏极电流功率频谱密度(S I / I D 2)为2.4 10 10 Hz 1和BiLayer和Monolayer MOS 2转换器分别为3.1 10 9 Hz 1。McWhorter的载流子数量流量模型可以准确地描述1晶体管类型,这表明载流子捕获和通过介电缺陷捕获和去捕获是CVD MOS 2晶体管中1/ F噪声的主要机制。此外,在VBg¼3V时,通过使用后场电压降低了双层MOS 2晶体管的接触电阻,从而在VBg¼3V时实现了最小的WLS I / I D 2的3.1 10 10 L m 2 / hz(其中W是栅极宽度,L是栅极长度)。这些结果表明,CVD双层MOS 2是未来大规模2D-Sementemondoctor的电子应用,具有提高噪声性能的有前途的候选者。
当前的电力传输技术受到能源摩擦耗散引起的能量损失的困扰,并且正在搜索能够在环境压力和温度下能够在环境压力和温度下进行无摩擦能量运输的材料。激子,电子和孔的准孔子结合状态,能够具有量子冷凝。所产生的超级效应在理论上具有非隔离的能量传递,1,2可以激发新型的电子设备并刺激了巨大的创新,以实现有效的能量转移应用。此外,预计在高温下,激子的冷凝于传统的超导性。3虽然凝结是可以实现的,因为激子容易重新组合,尤其是在室温下,但通过将激素与极化子与北极子耦合3,4,并且在胆汁材料中的电子和孔的空间分离是通过实验实现的。5 - 8个双层系统为激子冷凝提供了重要的平台,这是由于电子的空间分离和层之间的空间分离,从而阻止了激子快速重组。石墨烯双层已被证明是激子冷凝的有希望的候选人,其电子状态的扭曲角度依赖于
图1(a)设备的示意图。将封装在两个HBN薄片(紫色)中的BLG薄片(黑色)组成的异质结构放在金属后门(BG,深橙色)上。分裂的门(SG,浅橙色)和手指门(FGS,浅橙色)通过绝缘氧化铝层分开。金属触点(黄色)用于检测传输电流。(b)设备的有限偏置光谱测量。数字𝑁表示库仑封锁区域中的电子职业。(c)3 rd,第4和第5次COULOMB钻石的放大,从中提取第一壳能量δ𝐸SH1。红色箭头指示与激发态相对应的过渡线。左下方示意图说明了前5个电子的壳结构。(d)分别从正面(上图)和负SD分支(下图)提取第4个电子的激发状态能量。
抽象人工智能(AI)深深地嵌入了处理敏感信息和任务操作的部门中,并且保护这些系统已变得至关重要。本文引入了一种新型的双层防御系统,称为安全人工智能(SAI),旨在减轻与迅速注射和迅速中毒攻击有关的风险。在连续设置“ SAI”中使用两个大型语言模型(LLM) - 一种用于初始输入及时分类的“后卫”模型,该模型有效地滤除了对抗性输入以保护AI系统和响应用户查询的主要响应模型。通过严格的测试,SAI在防止恶意提示损害AI响应方面表现出了弹性,从而大大提高了AI安全性。本文彻底研究了SAI的架构,方法论和性能,以满足对安全和对抗性AI系统的不断增长的需求。关键字:大语言模型,安全的人工智能,人工智能,及时注入,AI安全性。ntroduction虽然人工智能(AI)在政府,银行业和医疗保健方面具有许多优势,但其融合会增加脆弱性,尤其是随着LLM的复杂性和能力发展。AI仍然容易受到对抗性及时的操纵的攻击,这些操纵利用了自然语言弱点,尽管对强大的模型训练和硬编码过滤器规则进行了大量研究[1] [9] [18]。直接将有害物质直接嵌入AI输入,快速注射和中毒攻击中提供了一种特殊的危害[1] [6] [11]。与通常集中于攻击系统弱点的传统网络威胁不同,这些攻击使用了AI学习的反应模式,因此修改模型以产生意外的和通常的负面结果[1] [3]。鉴于语言的复杂性和LLM答案的复杂性,这种敌对的方法可能很难检测和预防[6] [7]。在这项工作中提出了安全的人工智能(SAI)作为解决这些挑战的解决方案。SAI的创新架构满足了针对基于及时的敌对投入的弹性,可扩展的防御的需求