在这里,我们确认了这种猜想,特别补充了已知的算法结果,通过显示NP硬度的结果,用于当γ> 1时进行大致计数和采样,并具有强大的不可Xibibibility保证。我们还为矩阵获得了更精致的硬度结果,其中只允许每行恒定的条目为非零。我们减少的主要观察结果是,对于γ> 1,由于基础分布中的双峰性,当相互作用都是正常和随机的常规图时,Glauber动力学对完整和随机的常规图进行了缓慢的混合。虽然铁磁相互作用通常排除了NP硬度的结果,但在这里,我们通过以适当的方式引入轻度抗铁磁磁性,使频谱大致在同一范围内。这使我们能够利用上述图的双峰性,并通过适当地适当地适当地针对反铁磁系统开发的以前的不XHIBIMISICE技术来显示目标NP硬度。
在基于粉末床的添加剂制造(AM)中粉末扩散的不确定性在制造零件的质量和重复性方面提出了挑战。这些挑战由于粉末床颗粒之间存在的空隙而导致高孔隙率。这项工作着重于使用SS316L作为模型材料在粉末流动性上引起的粒径分布(PSD)引起的不确定性。分析了各种尺寸的颗粒,范围为10 µm至100 µm,以及双峰比为70:30的球形和卫星形颗粒。将使用USP 616确定每个样品的挖掘密度,表观密度和Hausner比率。较小的粒径已显示可降低体积密度和表观密度。同时,颗粒的形状也有助于粉末颗粒之间的包装能力。卫星粉已被证明可以增加粉末的直径,从而增强了粉末颗粒的散装密度。已显示双峰颗粒同时增加体积和挖掘的密度,而较小的粉末无法填充较大颗粒之间存在的空隙。但是,随着粉末颗粒之间的尺寸比的增加,大量密度降低,表明较小的粉末能够填补颗粒之间的间隙。在用Hausner比值来比较粉末颗粒时,双峰颗粒已显示出最差的流动性,值为1.19856。这是由于以下事实:较大颗粒之间的较小颗粒会增加粉末之间的摩擦。因此,本研究说明了粒度和形状如何影响粉末堆积密度,这对于优化材料设计和加工技术至关重要
fi g u r e 2 Hovon102子集中患者白血病特异性特异性与Cll-1双峰性的关联。在MDS-相关的AML(先验MDS和/或RAEB),NPM1野生型,FLT3野生型和ELN不利风险率中观察到较高比例的Cll-1双峰性(浅蓝色条)。cll-1表达模式的比例条形图(a)AML患者和/或分类为RAEB(MDS-相关AML)。(b)NPM1和(C)FLT3突变状态,(d)细胞遗传学,(e)ELN分类状态。MDS-相关AML,NPM1,FLT3突变状态和ELN分类状态在Chi-Square检验或Fisher的精确测试p <.05上具有统计学意义。ca休息,细胞遗传学异常休息组; CN – XY,细胞遗传学正常; Inv(16),反转16; MK,单色核型; t(8,21),易位8,21
图 1 (a) 描述功能化聚酐合成的示意图。靶向配体 CPTP 首先被乙酰化,然后在标准聚合物合成条件下与共聚物(“P”)发生反应。(b) 通过快速纳米沉淀法合成 NP,形成具有 COOH(即非功能化)或 CPTP(即功能化)端基部分的 NP。Mito-Met 结构示意图,被 NP 封装以进行功效研究,并针对可溶性剂量进行测试。Mito-Met C10(n = 9)用于研究。 (d) 功能化纯化聚合物的 1 H 核磁共振光谱显示 CPTP 苯基 CH 峰(δ 7.70 – 8.00,多重峰)以及聚合物 CPH 苯基 CH 峰(δ 8.02,双峰;δ 8.12,双峰);(e) 傅里叶变换红外光谱 - 功能化纯化聚合物的衰减全反射光谱显示 CPTP α -CH 2 弯曲峰(1450 cm 1)。对照包括仅 CPTP(未显示)和仅非功能化聚合物(显示)
摘要:电子束定向能量沉积(EB-DED)是一种很有前途的制备大尺寸、完全致密和近净成形金属部件的制造工艺。然而,对于钛合金的 EB-DED 工艺了解有限。在本研究中,通过 EB-DED 制备了近 α 高温钛合金 Ti60(Ti-5.8Al-4Sn-4Zr-0.7Nb-1.5Ta-0.4Si)。研究了制备的合金的化学成分、微观结构、拉伸性能(室温和 600 ◦ C)和蠕变行为,并将其与传统锻造层状和双峰对应物进行了比较。结果表明,Al 和 Sn 的平均蒸发损失分别为 10.28% 和 5.01%。成品合金的微观结构以粗柱状晶粒、层状 α 和在 α / β 界面处析出的椭圆硅化物为特征。在拉伸性能方面,无论是在室温还是在 600 ◦ C 下,垂直试样的强度都低于水平试样,但延展性却高于水平试样。此外,在 600 ◦ C 和 150 MPa 条件下测量的 EB-DED Ti60 合金在 100 小时的拉伸蠕变应变在原有和沉积后的 STA 条件下小于 0.15%,符合变形 Ti60 合金的标准要求。EB-DED Ti60 合金的抗蠕变性能优于其变形双峰合金。
摘要:照明是人类的基本需求,因此寻找具有高效率和宽带白光发射的照明源十分必要。零维 (0D) 金属卤化物化合物是有希望的候选化合物,一些无铅含锑化合物表现出双峰白光发射。然而,它们的起源仍不清楚。为了解决这个问题,我们设计并制备了一类新的 0D 金属卤化物化合物,由 [M(18-冠-6)] + (M = NH 4 , Rb) 和 SbX 5 2 − (X = Cl, Br) 单元组成。我们发现 0D 化合物的发射曲线与 18-冠-6 醚的发射曲线不同且分离良好,不包括几篇报道中提出的配体内电荷转移机制。飞秒瞬态吸收数据和光物理性质的成分依赖性表明,双峰白光发射是由与金属卤化物耦合的自俘获激子的单重态和三重态(1 STE 和 3 STE)引起的。这些 0D 化合物也是非常高效的发射器,白光光致发光量子产率高达 54%。■ 简介照明是人类的基本需求,占全球电力消耗的约 20%。1
神经人体工程学专注于大脑特征和相关心理状态,这些心理状态是行为的基础,旨在设计人机界面,提高认知和身体领域的表现。脑成像技术,如功能性近红外光谱 (fNIRS) 和脑电图 (EEG),被认为是实现这一目标的关键方法。最近的研究强调了结合 EEG 和 fNIRS 对提高这些接口系统的心理状态解码能力的价值,但对于这些改进是否适用于不同的范式和方法,以及在现实世界中使用这些系统的潜力,人们知之甚少。我们回顾了 33 项研究,比较了双峰 EEG-fNIRS 和单峰 EEG 和 fNIRS 在神经人体工程学的几个子领域中的心理状态解码准确性。根据这些研究,我们还考虑了在现实世界环境中利用这些系统的可穿戴版本的挑战。总体而言,所审查的研究表明,尽管在概念和方法方面存在重大差异,但双峰 EEG-fNIRS 的表现优于单峰 EEG 或 fNIRS。然而,要将双模态 EEG-fNIRS 应用于自然条件下,还有许多工作要做。我们考虑这些要点,以确定双模态 EEG-fNIRS 研究中预期或希望取得进展的方面。
组织学分析是癌症诊断的黄金标准方法。但是,它容易出现主观性和采样偏差。应对这些局限性,我们引入了一种定量的双峰方法,旨在为可疑区域提供非侵入性指导。将光谱光谱和定量超声技术组合在一起,以表征来自动物模型的两种不同的骨肿瘤类型:软骨肉瘤和骨肉瘤。使用两种不同的细胞系诱导骨肉瘤的生长。进行组织学分析作为参考。光反射率的三个超声参数和强度显示,在5%水平上,软骨肉瘤和骨肉瘤之间存在显着差异。同样,尽管在组织学检查中观察到了两种类型的骨肉瘤,但两种类型的骨肉瘤的变化也被报道了两种类型的骨肉瘤。这些观察结果表明我们技术在探测细组织特性中的敏感性。其次,超声基于光谱的技术鉴定了软骨肉瘤细胞和核的平均大小,相对误差分别为22%和9%。光学当量技术正确提取了软骨肉瘤和骨肉瘤的细胞和细胞的散射尺寸分布(分别为9.5±2.6和µ)。软骨肉瘤的核的光散射贡献估计为52%,骨肉瘤的光散射贡献可能分别表明大量和不存在细胞外基质。因此,超声和光学方法带来了互补参数。他们在细胞和核尺度上成功估计了形态学参数,这使我们的双峰技术有望用于肿瘤表征。
图5.2。相对电阻与EM测试的时间降解图。图中指出了两种不同的降解行为模式。...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................5.3。分别用于带有双层和三层屏障的样品的t = 275、300、325°C的时间的CDF图和j = 2×10 -6 a/cm 2。.....................................................................................................................................................................................................................................................................................................................................5.4。fib图像显示了(a)早期和(b)晚期失败的双层的下游诱导的空隙,以及(c)早期和(d)晚期失败的三层。虚线箭头指示电子流的方向。................................................................................................ 55 Fig.5.5。在t = 300°C下的双层三层屏障样品的双峰拟合。.................................................................................................. 56 Fig.5.6。Arrhenius图作为分裂A和B的温度的函数。提取早期和晚期失败模式的激活能。....... 58图6.1。tem显示了分裂的典型模具的Cu凹陷深度(a)a,(b)b和(c)c,分别为低,中值和高降低。....................................................................................................................................................................................................................................................................................................................................................... 64图6.2。在M2层的三个拆分中有缺陷的死亡百分比。............................................................................................................................................................................................................................................................................................................................................................................................................... 65图6.3。通过V2M2处的三个分裂的接触电阻。6.4。6.5。6.6。.....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................在t = 275、300、325°C分开a的时间的时间(TTF)的CDF图(TTF),J = 2×10 6 A/cm 2。.................................................................................... 67 Fig.来自PFA的EM测试结构的 FIB图像显示了(a)早期和(b)晚期失败的下游诱导的空隙。 ................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... 使用物理方法在t = 300°C下分裂A至C的双峰拟合。69图 6.7。 MTTF的Arrhenius图作为拆分a的温度的函数。 7.1。 2步(实线)和3步(仪表板线)Cu种子层的沉积功率。 ............................................................................................................ 76 Fig. 7.2。 (a)带有3步和2步Cu种子层的金属线的泄漏电流和(b)板电阻。 ....................................................................................................................................................................................................................................................................................................................... 78FIB图像显示了(a)早期和(b)晚期失败的下游诱导的空隙。...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................使用物理方法在t = 300°C下分裂A至C的双峰拟合。69图6.7。MTTF的Arrhenius图作为拆分a的温度的函数。7.1。2步(实线)和3步(仪表板线)Cu种子层的沉积功率。............................................................................................................ 76 Fig.7.2。(a)带有3步和2步Cu种子层的金属线的泄漏电流和(b)板电阻。....................................................................................................................................................................................................................................................................................................................... 78
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。
