伽罗瓦群置换多项式的根,多项式通过 M 8 − H 对偶确定时空区域。根对应于质量平方值,一般为代数数,因此对应于 M 4 c ⊂ M 8 c 中的质量双曲面。H 图像对应于光锥固有时间常数值 a = an 的 3 双曲面。因此,伽罗瓦群可以置换具有类时分离的点。但请注意,a 的两个值的实部或有理部可以相同。这乍一看很奇怪,但实际上证实了这样一个事实:定义 TQC 的类时辫对应于定义弦世界面的弦状对象的 TGD 类时辫(也涉及重新连接),它们现在不是作为物理状态的类空实体的时间演化,而是对应于定义完全固定全息术所需边界数据的类时实体。它们的存在是由于所涉及的作用原理的决定论的微小失败而必然出现的,并且完全类似于肥皂片的非决定论,肥皂片的框架充当了决定论失败的座位。
当两个面共有一个边缘时,边缘曲线将在树上出现两次,并且一个带有三个入射边缘的T型顶点在树中出现六次,具有相同的节点特征。从根开始,再到叶子,Brepgen使用基于变压器的扩散模型来依次denoise节点特征,同时检测并合并重复的节点,从而恢复B-REP拓扑信息。广泛的实验表明,布雷根(Brepgen)推进了CAD B-REP生成的任务,超过了各种基准上的现有方法。我们新收集的家具数据集的结果进一步展示了其在产生复杂几何形状方面的非凡能力。虽然先前的方法仅限于生成简单的棱柱形状,但Brepgen首次结合了自由形式和双曲面表面。Brepgen的其他应用包括CAD自动完成和设计插值。代码,预处理的模型和数据集可在https://github.com/samxuxiang/brepgen上找到。
Ariel(大气遥感红外系外行星大型巡天)是欧空局“宇宙视野”计划框架内采用的 M4 任务。其目的是通过凌日光谱法对已知系外行星的大气层进行巡天。发射计划于 2029 年进行。Ariel 科学有效载荷包括一台离轴、未被遮挡的卡塞格林望远镜,该望远镜为波段在 0.5 至 7.8 µm 之间的一组光度计和光谱仪提供信号,并在低温(55 K)下运行。望远镜组件采用创新的全铝设计,可耐受热变化,避免影响光学性能;它由一个主抛物面镜组成,其椭圆形孔径为 1.1 m 的长轴,随后是安装在重新聚焦系统上的双曲面次镜、抛物面重新准直三镜和一个平面折叠镜,将输出光束引导至与光学平台平行。基于 3 个柔性铰链的创新安装系统支撑着光学平台一侧的主镜。光学平台另一侧的仪器舱内装有 Ariel 红外光谱仪 (AIRS) 和精细制导系统/近红外光谱仪 (FGS/NIRSpec)。望远镜组装处于初步设计审查的 B2 阶段,开始制造结构模型;一些组件,即主镜、其安装系统和重新聚焦机制,正在进行进一步的开发活动,以提高其准备程度。本文介绍了 ARIEL 望远镜组装的设计和开发。