本文介绍了针对海洋表面车辆(MSV)的双环自适应轨迹跟踪控制系统,该系统既解决运动学和动态干扰。该方法始于外环的后台控制策略,该策略在运动级别生成速度命令,以确保对MSV的位置和标题进行准确跟踪。一个自适应估计器已整合以评估未知的海洋电流速度,从而有效地补偿了其影响。内环控件采用线性参数化来在动态级别产生扭矩命令,从而确保实际速度和指挥速度状态之间的对齐。提出了两种自适应调整定律:一个用于估算具有挑战性的水动力参数,另一个用于补偿外部海洋干扰。双环控制可显着减轻运动学和动态干扰的影响,从而提高了MSV跟踪的精度和整体性能。稳定性,并得出了系统未知参数的适应定律。数值模拟证明了拟议的控制策略的功效。
晶体管需要低电源电压,因此不幸的是,电路节点上的临界电荷会降低。因此,在航空航天应用中,电路容易受到甚至低辐射能量引起软误差的颗粒的撞击[1]。辐射颗粒包括质子,中子,α颗粒,重离子,电子等[2]。粒子的碰撞会产生许多电子和孔,这些电子和孔可以在受影响的晶体管的排水口收集,从而导致瞬态电压干扰。在顺序/存储电路中,存储节点的值可以暂时翻转(如果可以恢复)或长时间翻转(如果它是无法恢复的,并且需要在下一个时钟周期中需要刷新),从而导致单个事件沮丧(SEU)[3]。请注意,单节点误(SNU)是一种类型的SEU。在组合/逻辑电路中,逻辑门的输出值可能会受到干扰,输出单个事件瞬态(set)脉冲[4]。SEU和集合是典型的软错误,在最坏情况下会导致电路失败甚至系统崩溃。因此,航空应用非常需要软误差。
摘要:胸腺基质淋巴细胞生成素 (TSLP) 是一种上皮来源的促炎细胞因子,与哮喘和其他过敏性疾病的发展有关。我们利用 Bicycle Therapeutics 的专有噬菌体展示平台来识别对 TSLP 具有高亲和力的双环肽 (Bicycles),由于它与两种受体形成的扩展蛋白质 - 蛋白质相互作用,因此很难用传统的小分子对 TSLP 进行药物治疗。结果表明,命中系列可与热点中的 TSLP 结合,IL-7R α 也使用此热点。在与 TSLP 结合的小肽的第一个 X 射线晶体结构和关键代谢物的鉴定的指导下,我们能够提高该系列在肺 S9 级分中的蛋白水解稳定性,而不会牺牲结合亲和力。这产生了强效的 Bicycle 46,其对 TSLP 具有纳摩尔亲和力( KD = 13 nM),血浆清除率低至 6.4 mL/min/kg,给大鼠静脉注射后的有效半衰期为 46 分钟。■ 简介
抑制人尿激酶型纤溶酶原活化剂(HUPA)是一种在细胞细胞蛋白水解中起重要作用的丝氨酸蛋白酶,是降低肿瘤细胞浸润性和转移活性的有前途策略。然而,由于HUPA与其他旁拉丝氨酸蛋白酶的高结构相似性,选择性小分子HUPA抑制剂的产生已被证明是具有挑战性的。产生更具体疗法的努力导致了基于环状肽的抑制剂的发展,对HUPA的选择性更高。虽然需要后一种特性,但在临床前小鼠模型中,直系同源物鼠的保留却带来了抑制剂测试的困难。在这项工作中,我们采用了一种基于达尔文进化的方法来识别HUPA的噬菌体编码的双环肽抑制剂,对Murine UPA(MUPA)具有更好的交叉反应性。最佳选择的双环肽(UK132)分别抑制了HUPA和MUPA,K I值分别为0.33和12.58 µm。抑制作用似乎对UPA是特定的,因为UK132仅弱抑制了一组结构相似的丝氨酸蛋白酶。去除或取代第二个环,一个未在体外进化的循环导致效力低于UK132的单核细胞和双环肽类似物。交换1,3,5- Tris-(溴甲基) - 苯苯,其与噬菌体选择中未使用不同的小分子的苯二苯,导致效力降低了80倍,揭示了分支环化连接器的重要结构作用。UK132中精氨酸的进一步亚属菌对赖氨酸的进一步构成,导致了对HUPA(K I = 0.20 µM)和鼠直系同源物(K I = 2.79 µm)的抑制效力增强的双环肽UK140。通过结合良好的特异性,纳摩尔亲和力和低分子质量,在这项工作中开发的双环肽抑制剂可能会为发展有效和选择性的抗反转移疗法的发展提供新颖的人类和鼠交叉反应性铅。
摘要:Photoswitches是与光相互作用后化学转化的分子系统,它们在许多新技术中都有潜在的应用。Photoswitch候选者的设计和发现需要一系列特性的复杂分子工程,以优化特定应用程序的候选人,该任务可以使用量子化学筛选程序有效地解决。在本文中,我们在分子太阳能热能储存的背景下,使用量子量子化学方法进行了大规模筛选,对大约50万二百万二二烯二烯照片开关。我们进一步设备基于系统预测的太阳能转换效率并阐明了这种方法的潜在陷阱来对系统进行评分。我们穿越双环二烯化学空间的搜索揭示了具有前所未有的太阳能转换效率和存储密度的系统,这些系统显示了下一代分子太阳能热储能系统的有希望的设计指南。
自行车是一种新型的结构类别类别的治疗剂,它是通过使用中央化学支架将短线性肽将短线性肽限制在稳定的双环结构中的。1,该约束赋予了吸引人的药物样特性,包括高靶亲和力和特异性,甚至没有与高度相关蛋白的交叉反应性。自行车与大多数小分子不同,因为它们很容易被共轭,要么与其他有效负载,而不会失去对指定目标的亲和力。自行车也非常适合化学修饰,可以使用结构 - 活性关系(SAR)调整其分子特性和药理学。自行车最初是使用经过改进的噬菌体显示筛选平台确定的,该筛选平台含有> 10 20
有符号有向图 (或简称 sidigraph) 由一对 S = ( D , σ ) 组成,其中 D = ( V , A ) 为基础有向图,σ : A →{ 1 , − 1 } 是有符号函数。带有 +1 ( − 1) 符号的弧称为 S 的正 (负) 弧。一般而言,S 的弧称为有符号弧。sidigraph 的符号定义为其弧符号的乘积。如果 sidigraph 的符号为正 (负),则称其为正 (负)。如果 sidigraph 的所有弧均为正 (负),则称其为全正 (全负)。如果 sidigraph 的每个环均为正,则称其为环平衡的,否则为非环平衡的。在本文中,我们假设环平衡(非环平衡)环为正(负)环,并用 C + n(C − n)表示,其中 n 是顶点数。对于有向图,我们用 uv 表示从顶点 u 到顶点 v 的弧。顶点集 { vi | i = 1 , 2 , ... , n } 和有符号弧集 { vivi + 1 | i = 1 , 2 , ... , n − 1 } 组成有向路径 P n 。顶点集 { vi | i = 1 , 2 , ... , n } 和有符号弧集 { vivi + 1 | i = 1 , 2 , ... , n − 1 } 组成有向路径 P n 。 , n − 1 } ∪{ vnv 1 } 组成一个有向圈 C n 。如果 sidigraph 的底层图是连通的,则该 sidigraph 是连通的。如果连通的 sidigraph 包含唯一的单个有向圈,则它是单环 sidigraph。如果连通的 sidigraph 恰好包含两个单个有向圈,则它是双环 sidigraph。我们考虑具有 n ( n ≥ 4) 个顶点的双环有符号有向图类 S n ,它的两个有符号有向偶圈是顶点不相交的。对于 sidigraph S = ( D , σ ),如果它有一条从 u 到 v 的有向路径和一条从 v 到 u 的有向路径,其中 ∀ u , v ∈V ,那么它是强连通的。S 的最大强连通子图称为 sidigraph S 的强组件。
使用针对肿瘤相关靶蛋白的特异性探针对癌症进行分子成像,为提供有关靶向治疗选择、患者分层和治疗反应的信息提供了强大的解决方案。在这里,我们展示了双环肽作为靶向探针的强大功能,以肿瘤过表达的基质金属蛋白酶 MT1-MMP 为靶标。鉴定出一种对 MT1-MMP 具有亚纳摩尔亲和力的双环肽,其放射性结合物在 HT1080 异种移植小鼠模型中显示出选择性肿瘤摄取。通过化学修饰对肽进行蛋白水解稳定化显著增强了体内肿瘤信号[注射后 (pi) 1 小时从 2.5%ID/g 增加到 12%ID/g]。使用具有不同细胞系的小鼠异种移植模型的研究表明,肿瘤信号与体内 MT1-MMP 表达水平之间存在很强的相关性。双环脂肪酸改性
体内功效:用含有最不稳定连接器的BDC处理(BT17BDC17或BT1718)显示出快速而完全的肿瘤清除率(EBC-1细胞),而包含更多稳定连接器的BDC显示出相对降低的功效(图。5)表明目标内部化不是BDC功效的唯一作用机理,也可能在局部肿瘤环境中的细胞外切割和释放毒素也可能有助于。只有最不稳定的BDC(BT17BDC17)引起任何显着毒性(17%±9.7体重减轻);所有其他耐受性良好(在10mg/kg TIW时体重减轻<10%)。使用BT1718实现了最佳的治疗指数。在附加模型(HT-1080细胞)中对不同剂量方案中BT1718的测试也表现出极好的肿瘤回归,10mg/kg的BIW在23天内在所有3只动物中导致肿瘤清除率在23天内完全肿瘤清除率,并且没有重新增长到70天。