像素转换在图像处理中至关重要,很大程度上取决于插值方法来确保平滑度和清晰度。这项工作重点关注两种广泛使用的图像插值技术:最近邻插值和双线性插值,这两种技术都是使用集成软件代码实现的。我们的方法使每种插值技术都可以独立应用,从而可以直接比较它们的性能。为了对每种插值方法进行全面评估,我们使用了一组基本质量评估指标:峰值信噪比 (PSNR)、结构相似性指数 (SSIM)、灰度分析和均方误差 (MSE)。选择这些指标是为了对图像清晰度、结构准确性和整体视觉质量进行平衡评估。本研究的结果对每种插值技术的优势和局限性进行了详细分析。这些发现旨在帮助研究人员和从业者根据他们在图像处理领域的特定要求选择最合适的插值方法。通过提供比较框架,这项工作通过增强评估和优化数字成像应用中的图像质量的方法来为该领域做出贡献。
耦合参数谐振器(参数器)网络有望成为并行计算架构。在实现复杂网络的过程中,我们报告了两个耦合参数器的实验和理论分析。与以前的研究不同,我们探讨了参数器之间强双线性耦合的情况,以及失谐的作用。我们表明,即使需要仔细校准以确保有正确的解空间,系统仍可在此状态下作为 Ising 机运行。除了形成分裂正常模式外,还会产生新的混合对称状态。此外,我们预测具有 N > 2 个参数器的系统将经历多个相变,然后才能达到与 Ising 问题等同的状态。
磁共振成像 (MRI) 可以非侵入性地绘制大脑的代谢氧消耗 (CMRO 2 ),这对于理解和监测健康和疾病状态下的神经功能至关重要。然而,由于缺乏稳健的方法,对 MRI 氧代谢的深入研究迄今为止受到阻碍。一种绘制 CMRO 2 的 MRI 方法基于在氧气和二氧化碳的呼吸调节期间同时获取脑血流 (CBF) 和血氧水平依赖 (BOLD) 加权图像。虽然这种双校准方法在研究环境中显示出良好的前景,但当前的分析方法在存在噪声的情况下不稳定和/或计算要求高。在本文中,我们提出了一种机器学习实现,用于对双校准 fMRI 数据进行多参数评估。所提出的方法旨在解决稳定性、准确性和计算开销问题,消除使用 MRI 研究氧代谢的重大障碍。该方法利用获取的灌注和 BOLD 加权数据的时间频率变换,从中选择适当的特征向量来训练机器学习回归器。实施的机器学习方法之所以被选中,是因为它们对噪声具有鲁棒性,并且能够映射复杂的非线性关系(例如 BOLD 信号加权和血氧之间存在的关系)。极端随机树 (ET) 回归器用于估计静息血流量,多层感知器 (MLP) 用于估计 CMRO 2 和氧提取分数 (OEF)。带有加性噪声的合成数据用于训练回归器,模拟数据涵盖广泛的生理合理参数。在模拟和体内数据(n = 30)中,将实施的分析方法的性能与已发表的方法进行了比较。所提出的
摘要 - 对生成对抗网络(GAN)的理解进步已导致视觉编辑和合成任务的显着进步,并利用了嵌入在预训练的gan的潜在空间中的丰富语义。但是,现有方法通常是针对特定的gan体系结构量身定制的,并且仅限于发现不促进局部控制的全球语义方向,或者需要通过手动提供的区域或细分口罩进行某种形式的监督。从这个角度来看,我们提出了一种建筑敏锐的方法,该方法共同发现代表空间部分及其外观的因素,以一种完全无监督的方式。这些因素是通过在特征图上应用半非谐音张量分解来获得的,这反过来又可以通过像素级控制来实现上下文感知的本地图像编辑。此外,我们表明发现的外观因子对应于无需使用任何标签的概念的显着图。对广泛的GAN体系结构和数据集进行了实验,表明,与最新的状态相比,我们的方法在训练时间方面更有效,最重要的是,提供了更准确的局部控制。
预测药物-靶标相互作用是药物发现的关键。最近基于深度学习的方法表现出色,但仍存在两个挑战:(i)如何明确建模和学习药物与靶标之间的局部相互作用,以便更好地进行预测和解释;(ii)如何将预测性能推广到来自不同分布的新型药物-靶标对。在这项工作中,我们提出了 DrugBAN,这是一个具有域自适应功能的深度双线性注意网络 (BAN) 框架,用于明确学习药物与靶标之间的成对局部相互作用,并适应分布外的数据。DrugBAN 对药物分子图和靶蛋白序列进行预测,使用条件域对抗学习来对齐不同分布中学习到的相互作用表示,以便更好地推广到新型药物-靶标对。在域内和跨域设置下对三个基准数据集进行的实验表明,DrugBAN 在五个最先进的基线上实现了最佳整体性能。此外,可视化学习到的双线性注意图可以从预测结果中获得可解释的见解。
摘要:脑肿瘤自动分类是一种可行的加速临床诊断的方法。最近,使用 MRI 数据集进行深度卷积神经网络 (CNN) 训练已在计算机辅助诊断 (CAD) 系统中取得成功。为了进一步提高 CNN 的分类性能,在脑肿瘤的细微判别细节方面仍有一条艰难的道路。我们注意到,现有方法严重依赖数据驱动的卷积模型,而忽略了使一个类别与其他类别不同的因素。我们的研究旨在引导网络在相似的肿瘤类别中找到确切的差异。我们首先提出了一种针对脑肿瘤 MRI 的“双重抑制编码”模块,它从我们的网络中分出两条路径来细化全局无序信息和局部空间表示。目的是通过减少负面全局特征的影响并扩大显着局部部分的注意力,为正确的类别提供更有价值的线索。然后我们引入了一个用于特征融合的“分解双线性编码”层。目的是生成紧凑且有判别力的表示。最后,这两个组件之间的协同作用形成了一个以端到端方式学习的管道。大量实验在三个数据集的定性和定量评估中表现出卓越的分类性能。
摘要:卷积神经网络(CNN)可以自动从压力信息中学习特征,一些研究应用了CNN来识别触觉形状。但是,传感器的有限密度及其功能需求导致所获得的触觉图像具有低分辨率和模糊。为了解决这个问题,我们提出了双线性功能和多层融合卷积神经网络(BMF-CNN)。功能的双线性计算提高了网络的特征提取能力。同时,多层融合策略利用了不同层的互补性来增强特征利用率的效率。为了验证所提出的方法,构建了一个带有复杂边缘的26类字母触觉图像数据集。BMF-CNN模型达到了98.64%的触觉形状精度。结果表明,与传统的CNN和人工特征方法相比,BMF-CNN可以更有效地处理触觉形状。
摘要。,我们在配备双线性映射的组上给出了一种可验证的ran dom函数(VRF)的简单且有效的结构。我们的建筑是直接的;与Micali-Rabin-Vadhan [MRV99]和Lysyanskaya [Lys02]的先前作品相比,它绕过了从独特的签名到VRF的昂贵的昂贵的Goldreich-Levin转移。我们的安全证明是基于决定性双线性双线性二线反转(DBDHI),该反转(DBDHI)以前在[BB04A]中用于构建基于身份的加密方案。我们的VRF的证明和密钥与[Lys02]和[DOD03]中VRF的证明和键形成对比,它们在消息的大小上是线性的。我们在一个椭圆形组上进行操作,该组比[MRV99]中使用的乘法z ∗ n短得多,但我们达到了相同的安全性。此外,我们的计划可以分布和主动。
3.解决涉及常微分方程的初值和边界值问题 4.识别解析函数、谐波函数、正交轨迹 5.应用双线性变换和保角映射 6.识别定理的适用性并评估轮廓积分。