Cassandra Jabola是一部菲律宾裔纪录片电影和电视制片人。她曾与HBO,Netflix,PBS,National Geographic,NBCuniversal,TLC,Science Channel,Travel Channel,A&E和调查发现合作。她制作了专题纪录片,这些纪录片已在圣丹斯,翠贝卡,SXSW,IDFA,热门文档,AFI Docs和Doc NYC等放映。Cassandra的作品跨越了科学和技术,政治和历史,艺术与音乐。 她认为,音频讲故事是点燃变化的有力工具,因为它会放大那些不会听到的人的声音。 因此,她致力于造成基于社会正义的项目,并努力涵盖面对环境和边缘化社区的问题。 Cassandra在领先的纪录片,无脚本的系列以及从现场,现场和编辑室中从研发,邮政和发行中发出的简短视频经验丰富;本地和国际;在陆地,空中和水下!Cassandra的作品跨越了科学和技术,政治和历史,艺术与音乐。她认为,音频讲故事是点燃变化的有力工具,因为它会放大那些不会听到的人的声音。因此,她致力于造成基于社会正义的项目,并努力涵盖面对环境和边缘化社区的问题。Cassandra在领先的纪录片,无脚本的系列以及从现场,现场和编辑室中从研发,邮政和发行中发出的简短视频经验丰富;本地和国际;在陆地,空中和水下!
valeria.farinazzo@mackenzie.br摘要。虚拟现实(VR)对数字双胞胎(DT)的演变代表了沉浸式和互动技术领域的重大进步,尤其是在旨在在物理和合成产生的世界之间建立联系时。此连接为实际环境中的过程和系统提供了模拟,预防和优化的条件。该主题的重要性是基于各种原因。机会设想将DTS应用于多个工业领域,例如教育,尤其是在蒸汽(科学,技术,工程,艺术和数学)领域。这些应用程序可以降低成本并最大化教学过程中的创新机会,从而在安全的虚拟环境中支持与现实世界实施相关的方案和策略的测试。因此,本文介绍了有关DT在教育中应用的文献综述,提供了当代全景,并指出了一些未来研究的指示。
近年来,太空探索工作越来越集中于对火星和月球等行星和卫星的表面探索。这是通过使用流浪者来实现的,流浪者能够跨天体旅行并进行研究活动。但是,完成任务可能具有挑战性,必须及时解决问题,以避免丢失Sciminific Data甚至Rover本身。鉴于与火星(Olson,Matthies,Wright,Li,&di)的有限通信能力,必须迅速检测到异常,因为没有现场人工干预的可能性。要面对这个问题,NASA分别开始开发其漫游者的物理双胞胎,例如对好奇心和毅力的乐观情绪(Cook,C。,Johnson和Hautalu-Oma)(Castelluccio,)。同时,NASA和西门子研究了一个好奇的数字双胞胎,以使用SIM-DIOSOTOPE热电学发电机(MMRTG)使用SIM-Center 3D(M.I.T.,M.I.T.,)分析和解决由多损耗ra-Dioasotope热电学发电机(MMRTG)引起的散热问题。同样,欧洲航天局
开发用用例,利用高级技术在灾难管理,环境,城市规划,流动性等各种领域等。通过创建和水平部署最佳实践,促进在公共和私营部门各个领域中用例的社会实施。
Hina的杨氏河是欧亚大陆最长,是地球上第三长的河流,从藏族高原流向东中国海超过6,000公里。 它的盆地覆盖了中国几乎五分之一的土地区域,并拥有数亿人的遗嘱。 自1950年代以来,已经建立了长江及其支流的52,000多个水库,以减轻洪水,产生水力,稳定水供应并保护生态学。 在管理这个庞大的盆地方面面临许多挑战,以支持可持续发展水源并保护生态学的某种偶然目标。 该地区的人口增长,发展和城市化不断增加对水的需求,同时降低了水污染和对生物多样性的压力。 虽然长江盆地的Hina的杨氏河是欧亚大陆最长,是地球上第三长的河流,从藏族高原流向东中国海超过6,000公里。它的盆地覆盖了中国几乎五分之一的土地区域,并拥有数亿人的遗嘱。自1950年代以来,已经建立了长江及其支流的52,000多个水库,以减轻洪水,产生水力,稳定水供应并保护生态学。在管理这个庞大的盆地方面面临许多挑战,以支持可持续发展水源并保护生态学的某种偶然目标。该地区的人口增长,发展和城市化不断增加对水的需求,同时降低了水污染和对生物多样性的压力。虽然长江盆地的
随着全球数字化的快速加速,第六代(6G)移动网络有望在推动工业智能,促进高质量的经济发展以及实现全面的社会数字化转型方面发挥关键作用。面对维持和选择现有的第五代移动网络(5G)移动网络的综合性和成本压力,以及添加或修补的人工智能(AI)的局限性,6G网络必须从头开始将AI集成到他们的设计中。一方面,本机AI可以提供按需计算能力,数据和算法支持,在整个网络的整个生命周期中有系统地启用AI。另一方面,无线网络的数字双(dt)for for bolsters网络仿真,动力学预测和性能验证功能,tree降低了试验和错误成本。关于将本地AI和DT技术集成到6G移动网络中的研究令人鼓舞,而6G网络Au -Tosomy的开发的潜在关键技术好处包括:
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2025年3月1日发布。 https://doi.org/10.1101/2025.02.26.640353 doi:Biorxiv Preprint
磁轴承的模拟涉及高度非线性物理,对输入变化高度依赖。此外,在使用经典计算方法时,在现实的计算时间内,这种模拟是耗时而无法运行的。另一方面,经典模型还原技术无法在允许的计算窗口内实现所需的精度。为了解决这种复杂性,这项工作提出了基于物理的计算方法,模型还原技术和机器学习算法的组合,以满足要求。用于表示磁性轴承的物理模型是经典的Cauer梯子网络方法,而模型还原技术是在物理模型解决方案的误差上应用的。后来,在潜在空间中,机器学习算法用于预测潜在空间中校正的演变。结果显示了解决方案的改进,而不会稀释计算时间。该解决方案是几乎实时计算的(几毫秒),并将其与有限的元素参考解决方案进行了比较。关键字:光谱法,减少基础,机器学习,磁性轴承,磁悬浮,长期术语记忆
英国冒险家特纳双胞胎依靠松下硬书坚固的技术来设置串联电气Paramotor World Record
心脏数字双胞胎(CDTS)of er个性化的内部心脏表示,以推断与心脏机制相关的多尺度特性。CDT的创建需要有关躯干上电极位置的精确信息,特别是对于个性化心电图(ECG)校准。然而,当前的研究通常依赖于对ECG电极定位的躯干成像和手动 /半自动方法的额外获取。在这项研究中,我们提出了一种新颖和E FFI Cient拓扑知识模型,以完全自动从2D临床标准心脏MRIS中提取个性化的ECG标准电极。具体来说,我们从心脏MRI中获得稀疏的躯干轮廓,然后从轮廓中定位12铅ECG的标准电极。心脏MRI旨在成像心脏而不是躯干,从而导致成像中不完整的躯干几何形状。为了解决错过的拓扑结构,我们将电极合并为关键点的子集,可以将其与3D躯干拓扑明确对齐。实验结果表明,所提出的模型优于耗时的常规模型投影方法(Euclidean距离:1。24±0。293厘米与1。48±0。362 cm)和E FFI效率(2 S vs. 30-35分钟)。我们进一步证明了使用检测到的电极进行硅内ECG模拟的e FF具有效果,从而突出了它们创建准确和E ffi cient CDT模型的潜力。该代码可在https://github.com/lileitech/12Lead_ecg_electrode_localizer上获得。©2025 Elsevier B. V.保留所有权利。