肝切除仪启动了一个精心协调的增生过程,其特征在于驱动肝脏再生的调节细胞增殖。这个过程以肝脏质量的完全恢复结束,展示了这种体内平衡的精度和鲁棒性。肝脏迅速再生到功能齐全的器官的显着能力对于活着的供体肝移植(LDLT)的成功至关重要。在健康肝脏中,肝细胞通常保持静止状态(G0)。 然而,在部分肝切除术后,这些细胞过渡到G1相,以重新进入细胞周期。 手术重新分段会诱导各种应力,包括身体损伤,血流改变和代谢需求增加。 这些全部触发了在组织修复,再生和功能恢复中涉及的许多基因的激活和抑制。 在此过程中,在血液中可检测到的编码和非编码的RNA提供了对驱动肝脏回收的基因反应的有价值的见解。 这项研究将临床基因表达数据整合到先前开发的肝脏再生数学模型中,该模型跟踪静止,启动和增殖的肝细胞之间的过渡,以构建虚拟,特定于患者的肝模型。 使用来自12个健康LDLT供体的全部tran-squartome RNA测序数据,一年在14个时间点收集,我们通过加权基因共表达网络分析(WGCNA)鉴定了肝切除特异性基因表达模式。 因此,我们为LDLT供体的肝脏开发了个性化的渐进数字双胞胎(PEPMDT)。在健康肝脏中,肝细胞通常保持静止状态(G0)。然而,在部分肝切除术后,这些细胞过渡到G1相,以重新进入细胞周期。手术重新分段会诱导各种应力,包括身体损伤,血流改变和代谢需求增加。这些全部触发了在组织修复,再生和功能恢复中涉及的许多基因的激活和抑制。在此过程中,在血液中可检测到的编码和非编码的RNA提供了对驱动肝脏回收的基因反应的有价值的见解。这项研究将临床基因表达数据整合到先前开发的肝脏再生数学模型中,该模型跟踪静止,启动和增殖的肝细胞之间的过渡,以构建虚拟,特定于患者的肝模型。使用来自12个健康LDLT供体的全部tran-squartome RNA测序数据,一年在14个时间点收集,我们通过加权基因共表达网络分析(WGCNA)鉴定了肝切除特异性基因表达模式。因此,我们为LDLT供体的肝脏开发了个性化的渐进数字双胞胎(PEPMDT)。这些模式被组织成具有独特的转录动力学的截然不同的簇,并使用深度学习技术映射到模型变量。由此产生的PEPMDT通过利用血液衍生的基因表达数据来模拟再生反应来预测个体患者的恢复轨迹。通过将基因表达谱转换为动态模型变量,这种方法桥接了临床数据和数学建模,为个性化医学提供了强大的平台。这项研究强调了数据驱动的框架(如PEPMDT)在推进精密医学和优化LDLT供体的恢复结果方面的变革性潜力。———————————————————————————————————————————————————————————————————肝脏再生;部分肝切除术;数学建模;深入学习;数字双胞胎;活供体肝移植(LDLT)
全球供应链网的日益增长的复杂性,加上不断爆发事件的增加,强调了对数字支持工具的重点引入的需求。数字双胞胎已经引起了行业的兴趣,并在短期内寻求提供有用服务的能力。基于数字双胞胎的方法论的系统设计和生产计划和控制的贡献数量显着增加,而供应链管理的应用仍然很少。但是,最近对数字化的投资以及对短期计划的具体需求,意味着数字双胞胎可以有效地帮助企业管理其价值链。本文概述了有关供应链的数字双胞胎现有的概述,并收集了有关当前发展水平和未来研究挑战的有用见解。
2。Bissell MM,Hess AT,Biasiolli L等。:双脊肉主动脉瓣疾病中的主动脉膨胀:流动模式是主要因素,并且瓣膜融合类型有所不同。Circ Cardiovasc成像。2013; 6(4):499-507。3。verma S,SIU SC:双质主动脉瓣患者的主动脉扩张。n Engl J Med。
摘要:本文研究了人工神经网络(ANN)作为可行的数字双胞胎或工程系统中典型的耳语库模式(WGM)光学传感器的替代方案,尤其是在机器人技术等动态环境中。由于其脆弱性和有限的耐力,因此在这种情况下,基于微光学谐振器的WGM传感器是不合适的。为了解决这些问题,本文建议了专门为系统设计的ANN,并利用了WGM传感器的高质量因子(Q -Factor)。通过将适用性和耐力扩展到动态环境并减少脆弱性问题,ANN试图进行高分辨率的测量。为了最大程度地减少后处理要求并保持系统鲁棒性,研究目标是使ANN充当WGM传感器输出的代表性预测指标。在本文中使用Gucnoid 1.0类人形机器人作为一个例子,以说明WGM光学传感器如何改善各种应用的类人形机器人性能。实验的结果表明,ANN输出和实际WGM偏移的灵敏度,精度和分辨率是等效的。因此,删除了机器人技术行业中广泛使用高级感知的当前障碍,并验证了ANN作为虚拟替代物或数字双胞胎在机器人系统中的真实WGM传感器的潜力。因此,本文不仅对符合动态环境的机器人技术中使用的传感技术非常有益,还可以对工业自动化和人机界面进行有益。
最初在工程和制造业中开发的数字双胞胎的概念现在正在对医疗保健,尤其是皮肤病学产生重大影响。数字双胞胎是单个皮肤的虚拟表示,它通过整合实时数据,例如成像,遗传信息,生活方式因素和环境影响而设计(1,2)。数字双胞胎是物联网(IoT),深层和数字表型和人工智能(AI)(3)的常见产物。这项技术有望通过启用高度个性化的护理,预测性诊断和针对每个患者独特的皮肤专业量的优化治疗计划来彻底改变皮肤病学(2)。通过探索数字双胞胎的潜在应用,该手稿强调了它们在皮肤条件,美学和抗老化干预措施的个性化治疗中的变革性作用以及积极主动皮肤护理的预测性皮肤病学。,它还深入研究了AI和大数据在为这项创新供电的作用,同时解决成功采用数字双胞胎在皮肤病学中所需的实际挑战,道德考虑以及未来的方向。
广告要素与消费者的回应之间的关系,以确定特定的AD方法或组合元素的条件(例如,布局,吸引力,文本(复制),格式,颜色,符号,口号,图像,对比度,统一,美学,演示者)将利用广告效果(Dagalp and Sodergen,2023; Derda,2024)。尽管经验丰富和理论工作,广告设计仍然是一个主观和直观的过程。管理人员在很大程度上基于过去的广告系列,创造性见解和直觉而不是在声音研究和数据上做出设计决策(Burke等,1990; Kitchen 2023; Dagalp and Sodergreb,2023smith and Zook and Zook,2024)。但是,近年来,广告设计和测试过程正在发展为全面的数字时代。广告中最近的数字化转换是
管理,监控和转型20分钟:Ankita Raturi(Purdue) - 参与开放式AG Tech 20分钟:Rob Trice(Better Food Ventures,Virtual) - Agrfoodtech 20分钟20分钟的新创新方法:Jim Krogmeier(Purdue) - 开放式生态系统的计划
Deloitte的数字双胞胎/Flash解决方案利用一系列高级,创新和既定的技术和能力来解锁生物制药组织的各种好处。这些好处包括能够建立具有可自定义和高临界模型的有效且可靠的数字双胞胎环境,快速数字双胞胎实例化与ETL加速度功能配对,以及建立数字双胞胎所需的有效数据获取和集成。此外,DT/Flash使组织能够巧妙地代表复杂的物理资产和流程的动态,从而在大量资产,系统和环境中提供可伸缩性和互操作性,并在整个数字Digital Twin LifeCycle具有自动化版本的自动化版本版本和无摩擦更新的整个数字Twin LifeCycle中维护复杂的数字双胞胎环境。
我们介绍了有关数字双胞胎(DT)在城市交通管理的方法和应用的调查文件。虽然大多数关于DT的研究都集中在其“眼睛”上,即诸如对象检测和跟踪之类的新兴感知和感知,但真正区分DT与传统模拟器的真正区别在于其“大脑”,这是其“大脑”,预测和决策能力,可以从发现和概括的事物中提取模式并做出知识的决策。为了在城市运输管理中增加价值,DT需要由人工智能提供动力,并以低延迟的高宽带感应和网络技术补充。我们将首先审查利用网络物理系统的DT管道,并提出我们在纽约市现实世界中部署的DT架构。本调查文件可以是帮助研究人员和从业人员确定DTS开发的挑战和机会的指针;跨学科进行对话的桥梁;以及为各种城市运输应用程序利用DTS的潜力的路线图。
各地的城市正在经历深刻的转变。随着城市人口的增长,基础设施,住房和服务的压力也加剧了。使问题的复杂化是气候变化,它引入了新的挑战,例如洪水,海平面上升和极端天气事件。今天,有58%的城市已经很容易受到自然灾害的影响。到2050年,超过10亿人可能会成为环境危机流离失所的气候难民。建造气候富裕的建筑气候富裕城市:虚拟双胞胎城市如何:虚拟双胞胎如何赋予城市领导者能够增强城市领导人的能力