新型 UNA 47 浮球式蒸汽疏水阀是久经考验的 UNA 27h 的后继产品。新型号现在具有灵活的流向变化功能。与 UNA 4 一样,可以根据安装情况调整流向。UNA 47 的公称尺寸范围为 DN 15 至 DN 50,比其前身覆盖了更广泛的公称尺寸。UNA 47 的复式版本具有双金属排气口,使疏水阀甚至适用于过热蒸汽应用。在性能方面,UNA 47 轻松匹配其前身!蒸汽疏水阀的重量有所减轻,提高了安装和维护期间的操作便利性。
b'Centers具有明确定义的电子环境,以相互定义的方向为了实现合作效应。在基于金属的性质,氧化状态和协调数的各种促成因素中,金属(M M)距离调制已成为识别(Hetero)双金属系统中识别和微调合作效应的一种有希望的方法。[4]尤其是桥接配体设计是决定性的,可以将多个金属中心纳入定义的方向,并通过施用的特点置于中心。[5]选择协调环境,配体效应,例如柔韧性,英尺,电子参数和适当的间隔者,允许系统地变化M M M M M M M M距离是至关重要的因素。[6]可以通过共轭或非 - '
出色的光吸收特性,中等带结构和良好的光电化学特性。然而,传统的Znco₂O₄在光催化co₂还原中的性能受到诸如低光催化活性和选择性不佳的因素的限制。因此,修改Znco₂o₄以增强其光催化性能已成为当前研究的重点。双金属氧化物材料通过结构合适的界面来扩大光催化剂的分离和运输,可广泛用于改善光催化剂的性能。通过探索Znco₂o₄的接口构建,可以优化其光吸收性能,从而改善Znco₂o₄的可见光利用;可以提高光生电子孔对的分离效率,从而降低电子孔重组。并且可以改善CO₂的吸附和激活。
冷喷涂增材制造 (CSAM) 使用惰性气体载体将金属粉末加速至超音速并将其喷射到目标物体上,随后粉末颗粒在目标物体上变形并通过固态结合粘附在基材上。通过更换粉末,该技术可用于制造多材料(或分级材料)部件。高性能液体火箭发动机 (LRE) 燃烧室通常是双金属的,结合了高热导率铜合金衬套和高强度镍合金结构夹套。因此,CSAM 工艺对于液体火箭发动机燃烧室制造具有许多优势。本文讨论了使用 CSAM 进行 LRE 制造的优缺点,然后描述了使用 CSAM 技术制造的演示双金属燃烧室的设计,并展示了制造试验的结果。
在此提出了对使用纳米材料和树枝状聚合物在水处理的广泛审查。审查包括使用纳米材料来应对各种挑战,包括去除染料,抗菌作用,光催化,重金属去除,纳米材料回收和去除纳米层。评论重点介绍了现有的文献瓶颈,并提出了潜在的疗法,重点是低成本,可回收和双金属纳米材料的可用性。此外,该评论突出了考虑实际样本收集和分析的重要性,例如使用工业废水作为样本进行分析。审查通过严格研究现有研究来对基于纳米材料的水处理技术发展的进步提供了宝贵的见解。
是具有少于100 nm的晶体尺寸的多孔纳米材料,具有独特的外表面反应性2)用于修复苯的活化碳纤维(ACF)。(ACF)如何在生物修复过程中工作?活化的碳,也称为活性炭,是一种通常用于过滤水和空气中污染物的碳的形式,以及许多其他用途。已处理(激活)具有小的低体积孔,增加了可用于吸附的表面积(吸附为:固体保持气体或液体或溶质的分子作为薄膜,而与吸收不相同的过程,这是一种吸收或吸收的过程或吸收的过程,或者是由另一个吸收的过程。或化学反应。3)用于修复氯化乙烷的双金属纳米颗粒(PD/Fe纳米颗粒)。pd是钯,化学元件具有铂金的最低密度和最低的熔融。4)用于修复重金属离子的纳米晶TiO2。
• 先进的电弧焊技术,包括双弧和串联工艺 • 激光束和混合焊接技术及应用 • 送丝或粉末电子束焊接 • 药芯焊丝和无缝药芯焊丝技术及其用途 • 全金属合金焊接及其焊缝测试和分析 • 工业应用、检查和测试 • 增材制造部件的表面改性 • 高强度和装甲钢焊缝及其性能(包括弹道性能) • 水下和湿焊技术及其耗材 • 金属增材制造 (MAM) 材料的设计和模拟方面 • MAM 材料的测试、MAM 部件的变形预防和残余应力 • MAM 和双金属 WAAM 部件的疲劳和断裂韧性方面 • 机器人 MAM 和 WAAM 应用中的编程和软件开发 • 增材制造的预测理论和计算方法 • MAM 和 WAAM 部件的测试、无损检测方法和缺陷评估 • 焊接和 MAM 和 WAAM 人员的教育-培训-认证发展
Sara Iraci 等人在本文中,我们介绍了一种基于 NbxTi(1-x)N (NbTiN) 的超导双金属级 (2ML) BEOL 单元工艺,该工艺是在 imec 的 300 毫米试验线上使用半镶嵌流程和 193i 光刻技术开发的。该单元工艺的特点是直接金属蚀刻线的最小临界尺寸 (CD) 为 50 nm,浅平面化通孔的最小 CD 为 80 nm,沉积温度为 420 °C,与 CMOS BEOL 电介质兼容。50 nm NbTiN 线的归一化线电阻表明,95% 的器件符合预期电阻 800-1200 Ω/µm,与覆盖膜电阻率一致。低温测量表明,NbTiN 导线和通孔的临界温度为 12-13.5 K,临界电流密度为 80- 113mA/µm2。▪ 低电阻堆叠通孔金属化用于未来的互连,Marleen H. van
摘要:CO 2的可再生电驱动电解可能是一种可行的碳中性方法,用于生产基于碳的增值化学物质,例如一氧化碳,甲酸,甲酸,乙烯和乙醇。典型的CO 2电解仪源于高功率要求,这主要是由于能量强度阳极反应。在这项工作中,我们通过在阳极处使用基于Nife的双金属催化剂并施加磁场,从而减少了阳极过电势,从而减少了整体细胞能量消耗。对于CO 2电解过程生产CO,在基于电极的电极流动电解酶中,我们证明,在超过-300 mA/cm 2的CO部分电流密度下,可以使用ANODE和/或使用磁性磁力器的Nife catalyst来实现从7%到64%的功率节省。我们将最大CO部分电流密度达到-565 mA/cm 2,在全细胞能量效率为45%的情况下,将2 M KOH作为电解质。t