。CC-BY-NC 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 6 月 29 日发布。;https://doi.org/10.1101/2024.06.28.601124 doi:bioRxiv 预印本
SPO11 二聚化控制减数分裂 DNA 双链断裂形成 Cédric Oger 1 和 Corentin Claeys Bouuaert 1,* 1 鲁汶生物分子科学与技术研究所,鲁汶天主教大学,1348 Louvain-La-Neuve,比利时。 * 通讯地址:corentin.claeys@uclouvain.be。SPO11 通过诱导程序性 DNA 双链断裂 (DSB) 来启动减数分裂重组,但这种催化活性从未在体外重建。在这里,我们使用小小鼠 SPO11 报告了一个重现减数分裂 DSB 形成所有特征的生化系统。我们表明,SPO11 在没有任何伴侣的情况下催化断裂形成,并保持与 5 ¢ 断裂链的共价连接。我们发现 SPO11 的靶位选择受 DNA 底物的序列、可弯曲性和拓扑结构的影响,并提供了 SPO11 可以重新修复单链 DNA 断裂的证据。此外,我们表明 SPO11 在溶液中是单体,而切割需要二聚化才能重建两个混合活性位点。SPO11 及其伴侣 TOP6BL 形成 1:1 复合物,该复合物催化 DNA 切割,其活性与单独的 SPO11 相似。然而,该复合物以更高的亲和力结合 DNA 末端,表明在切割后可能发挥作用。我们提出了一个模型,其中体内 DSB 形成所需的 SPO11 的其他伴侣组装生物分子凝聚物,招募 SPO11-TOP6BL,从而实现二聚化和切割。我们的工作确立了 SPO11 二聚化是控制减数分裂 DSB 诱导的基本机制。
在癌细胞中,纺锤体形成检查点(SAC)的抑制剂激活了DSRNA识别途径,不仅是先前报道的DSDNA识别途径,而且还通过诱导DSRNA在细胞质量中的积累而诱导DSRNA识别途径,并具有染色与非分开(*3)。我们还揭示了DSRNA识别途径的激活诱导抗肿瘤免疫相关因子的分泌,例如T细胞趋化因子和1型干扰素,这些因子促进了T细胞迁移和激活。接下来,为了阐明与非隔离的染色对,使用免疫沉淀产生的dsRNA特异性识别dsRNA,并通过免疫药物的序列确定了序列的序列,并确定了序列的序列,并确定了序列的差异,并确定了sac抑制剂的浓缩。结果,我们发现DSRNA倾向于由散射的重复序列(*5)产生,这些重复序列(*5)相对接近基因组中的基因区域,并且在非编码区域(*4)周围被ATAC-SEQ检测为开放染色质区域,并且染色质构象可能影响散射重复的转录活性。还知道,当SAC抑制诱导染色体敞开时,形成了包含称为微核的不完整基因组的细胞内细胞器,在纯化了细胞核和微核并分析包含的RNA后,它揭示了许多转录产物。最后,在小鼠模型中,我们使用缺乏MAV中的细胞在囊肿抑制剂后分析了肿瘤的生长,该细胞在DSRNA识别途径中起着核心作用和免疫缺陷小鼠(*6),并发现囊抑制剂通过抗衰测依赖性依赖于DSRNA的活性在DSRNA上发挥治疗作用。 [展开]
恒温扩增核酸检测技术因其耗时短、对扩增 设备要求低和引物探针商品化合成稳定等优势 , 在 病原快速检测技术中脱颖而出。 Piepenburg 等 [ 13 ] 参 照 T4 噬菌体 DNA 复制系统于 2006 年创建了一种新 型等温扩增技术 , 使用酶来打开双链 DNA, 该技术 称为重组酶聚合酶扩增 (Recombinase polymerase am- plification, RPA) 。随后发明的重组酶介导链置换 核酸扩增技术 (Recombinase-aid amplification, RAA) 技术原理与 RPA 类似 , 不同之处在于 RAA 的重组酶 来源于细菌或真菌 , 而 RPA 的重组酶来自 T4 噬菌 体。 2017 年 [ 14 ] 结合以上重组酶 , SHERLOCK (Specifi- chigh-sensitivity enzymatic reporter unlocking) 检测 方案问世 , 并应用于新冠病毒的检测技术开发 [ 15 ] , 该技术通过改造规律间隔成簇短回文重复序列及 其关联蛋白 (Clustered regularly interspaced short pa- lindromic repeats/CRISPR-associated proteins system, CRISPR/Cas) 系统 , 使其能够识别特定的严重急性 呼吸综合征冠状病毒 2 (Severe acute respiratory syn- drome coronavirus 2, SARS-Cov-2) 基因组片段 , 1h 就能确定检测结果 , 检测限可低至 2 amol/L 。 SHER- LOCK 技术特异和简便 , 将 SHERLOCK 与 RAA 整合 集成 , 能够凸显两者的优势 , 不仅可以实现靶标核 酸的快速扩增 ( 保留等温扩增技术的优势 ), 还增强 了检测特异性。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
储存和稳定性: 尿嘧啶 DNA 糖基酶采用干冰或蓝冰运输。到货后储存于 -20°C 下,以获得最佳稳定性。 有效期: 在外包装盒标签上的有效期内,在推荐条件下储存并正确处理时,试剂盒可保持完整活性。 单位定义: 一个单位是指每分钟催化含尿嘧啶双链 DNA 释放 60 pmol 尿嘧啶的酶量。通过 37°C 下 30 分钟内在含有 0.2 mg DNA ( 10 4 -10 5 cpm/mg )的 50 mL 反应预混液中释放 [ 3 H]- 脲嘧啶来测量活性。 安全预防措施: 处理试剂前请阅读并理解 SDS (安全数据表)。首次发货时提供 SDS 的纸质版文件,此后可应要求提 供。 质量控制: Meridian 遵守 ISO 13485 质量管理体系运行。尿嘧啶 DNA 糖基酶在放行前经过广泛的活性测试。
摘要 CRISPR/Cas9 系统 ( 常间回文重复序列丛集 / 常间回文重复序列丛集关联蛋白系统 ) 为靶向基因编辑提 供了强大的技术手段 . 利用序列特异性 sgRNA 的引导 , CRISPR/Cas9 系统能够精准地在目标 DNA 的确切位置导 入双链切口 . 与已有的基因编辑手段相比 , 该系统具有更优异的简便性、特异性和有效性 . 目前 , 大量涉及体内 外多物种的 CRISPR/Cas9 基因编辑研究已充分展示了该技术的巨大潜力 , 为基于该技术的疾病治疗研究和临床 应用带来了希望 . 基于 CRISPR/Cas9 基因编辑技术所介导的非同源性末端连接和同源性 DNA 修复作用 , 近期多 个研究工作已经成功应用该技术修复了包括点突变和基因组缺失等在内的遗传疾病相关基因组缺陷 . 本综述 将总结近期有关利用 CRISPR/Cas9 基因编辑技术治疗人类遗传性疾病的相关临床前研究进展 .
抽象抗体 - 药物结合物由与靶抗体相关的有效小分子有效载荷组成。有效载荷必须拥有一个可行的功能组,可以通过该范围连接连接器。连接器 - 附件选项通过羟基连接到有效载荷仍然有限。开发了基于2-氨基吡啶的释放组,以使para-氨基苯甲酸氨基甲酸酯(PABC)连接器稳定地附着到Budesonide的C21-羟基,糖皮质激素受体激动剂。有效载荷释放涉及一系列由蛋白酶介导的二肽-PABC键裂解引发的两个自适应事件。在pH 7.4和pH 5.4的缓冲溶液中的一系列有效载荷中间体确定布德索尼德释放率,从而导致2-氨基吡啶鉴定为首选释放组。 添加聚乙二醇基团改善了接头的亲水性,从而提供了具有合适特性的CD19-甲硝基ADC。 ADC23证明了靶向的布德索德递送到CD19表达细胞,并抑制了小鼠的B细胞激活。布德索尼德释放率,从而导致2-氨基吡啶鉴定为首选释放组。添加聚乙二醇基团改善了接头的亲水性,从而提供了具有合适特性的CD19-甲硝基ADC。ADC23证明了靶向的布德索德递送到CD19表达细胞,并抑制了小鼠的B细胞激活。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本的版权持有人(该版本发布于2023年6月1日。; https://doi.org/10.1101/2022.02.25.481063 doi:biorxiv Preprint