图 1 DSB 修复途径总览 .DSB 发生后 , Ku70-80 会最先结合上来 , 如果不发生末端切除 , 会继而招募 DNA-PKcs, ligase IV, XRCC4 等 cNHEJ 核心因子介导 cHNEJ 修复途径 .如果末端发生 MRN-CtIP 介导的末端切除 , 则会产生 ssDNA 抑制 cNHEJ 修复途 径 .短程切除和长程切除产生的 ssDNA 可以通过链内退火进行修复 , 分别被称为 alt-EJ 和 SSA.长距离切除产生的 ssDNA 也可以 在 BRCA2-PALB2-BRCA1 复合体的帮助下和 RAD51 形成核蛋白纤维 , 进行同源找寻和连入侵过程 , 从而进入 HR 修复途径 .HR 途径又可以分为 BIR, SDSA 和 DSBR Figure 1 Overview of DSB repair pathways.The broken ends are first recognized and bound by Ku70-80.Without end resection, other cNHEJ core factors, such as DNA-PKcs, ligase IV, XRCC4, would be recruited to DSBs to mediate cNHEJ pathway.When MRN-CtIP-mediated resection occurs, the generated ssDNA will inhibit cNHEJ pathway.ssDNA from short-range and long-range resection can anneal in-strand to resolve the damages, termed Alt-EJ and SSA, respectively.ssDNA from long-range resection can also be bound by RAD51 to form nucleoprotein filament under the help of BRCA2-PALB2-BRCA1 complex.Nucleoprotein filament carry out homologous searching and strand invasion, promoting HR pathway.The HR pathway could be divided into BIR, SDSA and DSBR
机器人手臂任务中的感知技术。通过分析机器人臂的运动学并设计双臂合作系统,将视觉点云技术结合起来,实现双臂合作握把,并通过使用ROS平台来验证合作社CON-TROL策略的有效性,从而构建双臂臂系统的实验平台。主要研究内容包括分析机器人ARM运动学的正和反向运动学模型,视觉点云识别在双臂合作任务中的应用,双臂合作控制策略的实现以及合作掌握的实验结果和分析。通过这项研究,成功设计和实现了基于ROS的双机器人臂合作感,并实现了双臂合作控制策略的有效性。
达里乌斯(Div> Darius)一直专注于全球智能保健产品的制造已有10多年的历史,并积累了超过1000万单位的保健产品。目前,该公司有16个§ĉĉáì¶çĭ。 Öîtouminstrecoustout。
摘要:本综述研究重点关注并网双馈感应发电机 (DFIG) 风电场智能控制系统中使用的各种方法。本文回顾了一种使用模糊协调 PI 的控制器,该控制器建议用于在大型风电场发生干扰时通过降压-升压转换器 (DC-DC 转换器) 改善与 DFIG 耦合的超级电容器 (SC) 的动态性能。此外,本研究回顾了一种俯仰角控制,用于在不同风速下调节风力涡轮机 (WT) 叶片的角度,以控制功率并安全运行 WT。在俯仰角上实施人工智能控制 (模糊方法) 取代传统控制以提高系统性能,模糊方法用于在各种工作条件下自动调整传统控制参数。然后,本文回顾了一种开发的控制技术,该技术使用区间型 2 模糊逻辑控制 (FLC) 调整 PI 来为由 DFIG 操作的 WT 进行最佳扭矩调节。建议的控制可调节机械转子速度的误差并产生实现最大输出功率的最佳扭矩。根据现有文献的结果,引入了 SC 到三相四线有源电力滤波器 (APF) 直流链路的集成,方法是使用由模糊控制方法控制的接口三级双向降压-升压转换器。关键词:智能控制系统;风能;电力电子;双馈感应发电机;最大功率跟踪。
控制车辆是许多人日常生活的一部分。了解人类如何控制车辆对于车辆及其与人类控制器的接口的设计尤为重要。它使工程师能够设计更快、更安全、更舒适、更节能、更通用、更好的车辆。尤其是现在,当自动化使我们能够以各种可以想象的方式支持人类控制器时,了解人类如何控制和与车辆交互非常重要。人类和自动化将动态共享对车辆的控制权。因此,自动化应该(至少!)围绕人类进行设计,但如果自动化的行为方式与人类的控制行为相似,那就更好了。如果自动化表现得像人类控制器,人类控制器就能更好地理解自动化的意图,从而提高安全性、增加舒适度并更容易被接受。人类控制器 (HC) 几乎总是控制着车辆以实现高级目标。为了实现这一高级目标,HC 需要连续执行大量较小的任务,这些任务通过向车辆提供“控制输入”来实现:转动方向盘、踩下油门、拉动直升机上的总杆、转动旋钮等。要理解高级目标和低级控制输入之间的关系,有助于
摘要 生物动力馈通 (BDFT) 是未来驾驶舱触摸屏操作的一个关键问题,因为湍流导致的驾驶舱加速使飞行员容易受到错误触摸的影响,从而影响任务执行。本研究重点是实施基于软件的取消方法,以减轻 BDFT 在触摸屏拖动任务中的不利影响。进行了一项有 18 名参与者的飞行模拟器实验,以估计主飞行显示器上水平和垂直触摸输入的 BDFT 动力学模型。平均 BDFT 模型用于在用于模型识别的相同连续拖动任务和离散点对点拖动任务中取消 BDFT。虽然对于连续任务,取消使 BDFT 缓解了 63%,但由于 BDFT 敏感性降低,同样的取消对于离散任务无效。总体而言,结果表明,虽然基于模型的 BDFT 取消可能非常有效,但一个关键的技术挑战是确保它具有足够的任务自适应性。
摘要一种未来的人造视网膜,可以恢复盲人的高敏度视力,将依靠能够使用自适应,双向和高分辨率设备来读(观察)和写入(观察)和写(控制)神经元的尖峰活动。尽管当前的研究重点是克服构建和植入这种设备的技术挑战,利用其能力来实现更急性的视觉感知也将需要实质性的计算进步。使用Ex Vivo多电极阵列实验室原型使用高密度的大规模记录和刺激,我们构成了一些主要的计算问题,并描述了当前的进度和未来解决方案的机会。首先,我们通过使用从大型实验数据集中学到的低维变异性变异性的低维歧管来确定盲视网膜自发活动的细胞类型和位置,然后有效地估计其视觉响应特性。第二,我们通过通过电极阵列传递电流模式来估计对大量相关电刺激的视网膜响应,尖峰对产生的记录进行排序,并使用结果来开发诱发响应的模型。第三,我们通过在视觉系统的整合时间内暂时抛弃各种电刺激的收集来重现给定的视觉目标的所需响应。一起,这些新颖的方法可能会在下一代设备中大大增强人造视力。