(CH 4)排放,通过在其Forestomach中发酵饲料(图1)(Knapp等,2014)。反刍动物具有独特的消化系统,该消化系统由四个腔室的胃组成:瘤胃,网状,奥马苏姆和母库。瘤胃是许多微生物的住所,包括细菌,真菌,原生动物和古细菌,这些微生物在寄主动物的饲料降解和能量供应中起着至关重要的作用(Bergman,1990; Maia等,2016)。饲料成分,尤其是碳水化合物,在瘤胃中部分或完全发酵,并产生挥发性脂肪酸(VFAS),例如乙酸盐,丙酸酯,丁酸酯,丁酸酯,以及二氧化碳(CO 2)和氢气(H 2)(H 2)(h 2)(Van Nevel和Demeyer,1996)(图。2)。挥发性脂肪酸是反刍动物的重要能源,而CO 2和H 2后来可以通过甲烷古细菌的作用将其从动物进入环境之前将其降低至CH 4(Bergman,1990)。甲烷是全球变暖的主要贡献者之一,其全球变暖潜力是另一种温室气2(Grossi等,2019)。瘤胃的Ch 4排放量代表饲料中最多15%的总能量(GE)损失,否则可以用于动物的生长和生产(Van Nevel和Demeyer,1996),因此对动物不利。因此,制定适当的CH 4减排策略对于未来获得可持续的反刍动物生产系统很重要(Grossi等,2019)。interic甲烷发生既是环境和营养问题,并且在此过程中的任何中断都可以为动物提供营养益处,并导致释放较低有效的温室气体CO 2和H 2(Patra等人,2017年; Grossi等人,2017; Grossi等,2019)。
牲畜胃肠道中肠甲烷的产生被认为是估计喂养系统中能量代谢的方程中的能量损失。因此,应与方程的其他因素重新校准甲烷排放的特定抑制作用所产生的保留能量。,通常假定饲料中的净能量增加,从而有益于产生功能,尤其是由于瘤胃中甲烷的重要产生而导致反刍动物。尽管如此,我们在这项工作中确认反刍动物的排放并不能转化为生产的一致改进。使用实验数据对能量流的理论计算表明,生产的净能量的预期改善很小,很难检测到使用抑制甲烷生成的饲料添加剂获得的甲烷产生(25%)的中等抑制(25%)。重要的是,当抑制甲烷发生时,使用规范模型的能量分配可能不足。缺乏有关各种参数的信息,这些参数在能量分配中起作用,并且在甲烷的挑衅下可能受到影响。在抑制甲烷发生时,应根据呼吸交换计算热量产生的公式。此外,还需要更好地理解抑制对发酵产物,发酵热和微生物生物量的影响。当前,这过多的H 2及其对微生物群和宿主的后果尚不清楚。2023作者。抑制作用诱导H 2的积累,H 2是用于产生甲烷的主要底物,对宿主没有能量值,并且大多数瘤胃微生物并未广泛使用它。当抑制肠甲烷发生时,所有这些其他信息将更好地说明反刍动物的能量交易。基于可用信息,得出的结论是,不保证肠甲烷抑制作用将转化为更多的进食动物。由Elsevier B.V.代表动物财团出版。这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
摘要:反刍动物的epizootic出血性疾病(EHD)是一种病毒病理学,具有显着的福利,社会和经济影响。病因epizootic出血性疾病病毒(EHDV)属于Orbivirus属,导致北美,亚洲,非洲和大洋洲的牲畜和野生动植物之间在牲畜和野生动植物之间发生明显的区域性疾病暴发,导致了明显的运动性和死亡率。在过去的十年中,这种病毒疾病已成为地中海盆地国家的真正威胁,最近发生了几次重要的牲畜爆发。欧盟还注册了在其领土内检测到的第一个EHDV案件。涉及病毒传播的有能力的向量,Culicoides Midges正在扩大其分布,可以想象,这是由于全球气候变化所致。因此,全球牲畜和野生反刍动物有这种严重疾病的风险。本综述概述了有关EHDV的当前知识,包括分布和毒力的变化,对不同动物疾病模型的检查以及有关控制疾病的潜在治疗方法的讨论。
• LSDV 具有高度的宿主特异性,仅导致牛 (Bos indicus 和 B. taurus) 和水牛 (Bubalus bubalis) 患病。埃塞俄比亚的一项研究表明,不同品种对 LSD 的易感性存在差异,与当地的瘤牛相比,荷斯坦牛或杂交牛因 LSD 而表现出更高的发病率和死亡率。• 在野生动物中,据报道纳米比亚的跳羚 (Antidorcas marsupialis) 和无症状大羚羊 (Taurotragus oryx) 中存在该病毒;南非的羚羊 (Oryx gazelle);沙特阿拉伯的阿拉伯羚羊 (Oryx leucoryx);以及 2021 年在泰国发现的瓜尔豆 (Bos gaurus)、美洲鬣羚 (Capricornis sumtraensis) 和野牛 (Bos javanicus)。野生和圈养野生反刍动物(例如动物园反刍动物)的易感性尚不清楚,它们在 LSD 流行病学中可能发挥的作用仍在研究中。• LSDV 不是人畜共患的,因此人类不会感染该疾病。• 尽管与牛近距离饲养,但没有关于绵羊和山羊感染 LSD 或与该疾病的流行病学关系的报道。
1。。我们正在使用基因编辑来生产具有最佳脂肪含量增加的高能量草。这些草旨在帮助牲畜农民增强牛奶和肉类的生产,同时还降低了甲烷排放量,潜在的可能性高达20%。反刍动物甲烷约占英国农业产生的温室气体排放总数的一半。
编号:2025/09 截止日期:2025 年 1 月 31 日 项目名称:研究易感反刍动物对蓝舌病病毒感染的 T 细胞反应:一种比较方法。 指导老师:Kerry Newbrook 博士、Katy Moffat 博士和 Wilhelm Gerner 博士 研究小组:非水泡参考实验室 项目摘要:蓝舌病毒 (BTV) 是一种由库蠓传播的环状病毒,是导致绵羊、牛、山羊和鹿出血性疾病蓝舌病 (BT) 的病因。BTV 血清型 3 (BTV-3) 于 2023 年 9 月首次出现在北欧,并于同年晚些时候在英格兰南部的牛和羊中被发现。这是 15 多年来英国首次发现 BTV。2024 年 8 月,BTV-3 再次出现,英国随即宣布疫情爆发。这影响了国内和国际贸易(通过限制牲畜流动),并导致了高昂的经济成本和福利问题。虽然英国目前有几种紧急 BTV-3 疫苗可用,但我们需要更深入地了解反刍动物对 BTV 感染的免疫反应,以开发更有效的疫苗。
1。一氧化二氮(N 2 O)在施用合成和有机肥料期间释放出来,通过放牧动物的肥料沉积以及作物残基的分解。2。甲烷(CH 4)是由肥料管理产生的,并且是反刍动物消化过程中肠发酵的副产品。3。二氧化碳(CO 2)是通过燃烧化石燃料生产的能量生产的,嵌入了购买的输入和废物处理中。
摘要:瘤胃的产生是通过瘤胃发酵产生的代谢氢的主要水槽,并被认为是温室气体排放的相当多的来源。甲烷的产生是一种复杂的特征,受干物质摄入,进料组成,瘤胃菌群及其发酵,哺乳期,宿主遗传学和环境因素的影响。已经提出了各种缓解方法。由于单个反刍动物表现出不同的甲烷转化效率,因此低甲烷发射动物的微生物特征对于成功的瘤胃和环境友好的甲烷缓解可能是必不可少的。几种细菌种类,包括Sharpea,未表征的琥珀酰基科和某些Prevotella系统型,已被列为低甲烷发射绵羊和牛的关键参与者。未分类细菌的功能特征尚不清楚,因为它们尚未培养。在这里,我们回顾了瘤胃甲烷的产生和缓解策略,重点是瘤胃发酵以及瘤胃菌群的功能作用,并描述了最近从低甲烷发射和高丙酸牛奶中分离出的新型普雷特拉物种的系统发育和生理特征。本综述可能有助于更好地了解瘤胃消化过程和瘤胃功能,以确定可持续反刍动物生产的整体和环保甲烷缓解方法。
James Weber 博士,兽医 tatiana Stanton 博士 Rene DeLeeuw Betsy Hodge 机构兽医 小反刍动物专家 山羊繁殖和畜牧业教育家 缅因大学 康奈尔大学遗传学顾问 康奈尔合作推广部 缅因州奥罗诺 纽约州伊萨卡 Heron's Roost 农场 纽约州圣劳伦斯县 jaweber@maine.edu TLS7@cornell.edu redeleeuw@gmail.com bmf9@cornell.edu