MBR 将传统活性污泥技术与膜过滤相结合。QUA 的 EnviQ 膜经过专门开发,可提高 MBR 设施的易操作性和维护性。获得专利的创新 EnviQ 设计通过更坚固、更耐用的 PVDF 平板膜提供超滤质量的产品水。EnviQ 的独特功能(如无框膜设计、反向扩散和专门设计的空气扩散器)可最大限度地提高洗涤效率,从而减少清洁工作。
最近,生成式机器学习模型的输出质量得到了一定程度的提高,开辟了新的使用途径。这种质量的提高导致了商业生成平台的出现,用户可以在其中创建任意的文本和图像提示,以便快速生成大量图像。这些图像有时用作完成的创意结果,有时用作进一步手动编辑或设计构思的基础。从手动草图到图像编辑器和 3D 渲染,各种传统的可视化方法每天都在建筑设计中使用。建筑师很快就对生成方法产生了兴趣,正如 AEC 杂志 (2022) 的特别版所反映的那样。这项新技术在公众中得到了广泛讨论,从其具体用例到其开发方式的伦理以及它将带来哪些变化。在本文中,我们希望利用 Midjourney 平台的开放性以定量方式分析当前的建筑用例和功能。我们通过多种方法分析了 5800 万个查询,包括 word2vec 等 NLP 方法。我们考虑了这些模型背后的相关技术部分,并将研究它们如何使现在和将来的建筑师受益。图像生成模型的当前技术基础是所谓的扩散方法。Sohl-Dickstein 等人(2015 年)首次引入了正向扩散,它会逐步破坏图像中的结构化信息,而反向扩散则试图重新生成丢失的信息。然而,由于原始图像信息已被破坏,反向扩散至少部分起作用
氯化溶剂羽流的修复是一项艰巨的技术挑战,因为只有少数几个地点已经证实能够将地下水完全恢复到原始状态。本情况说明书总结了造成这一困难的一个关键因素 - 基质扩散。基质扩散是地下水中的污染物最初从高渗透性区域(例如砂砾)中浓度较高的区域迁移到低渗透性介质(例如黏土砂、粉砂和粘土)的过程。当高渗透性区域的地下水羽流浓度降低时,这种扩散过程可以逆向发生(“反向扩散”),并且在主要污染源被移除或控制后很长一段时间内,可能成为难以管理的次要污染源。
摘要 - 同时进行多层(SMS)成像是加速磁共振成像(MRI)采集的强大技术。但是,由于激发切片之间和内部的复杂信号相互作用,SMS重建仍然具有挑战性。这项研究提出了使用深处先验的强大的SMS MRI重建方法。从高斯噪声开始,我们利用扩散概率模型(DDPM)的脱糖性,通过反向扩散迭代逐步恢复单个切片,同时从读取串联框架下的MEA k-Space施加数据一致性。设计后采样过程使DDPM训练可以在单板图像上执行,而无需对SMS任务进行特殊调整。此外,我们的方法集成了低频增强(LFE)模块,以解决一个实用问题,即SMS加速快速自旋Echo(FSE)和回声平面成像(EPI)semitions无法轻易嵌入自动启动信号。的实验实验表明,我们的方法一致地超过了现有方法,并且可以很好地概括到看不见的数据集。该代码可从https://github.com/solor-pikachu/roger获得评论Pro-Cess之后。
利用预训练的扩散模型进行恢复已成为传统特定任务训练方法的偏爱替代品。以前的工作通过使用显式降解模型限制解决方案空间取得了值得注意的成功。但是,当面对复杂的降解时,这些方法通常无法精确建模。在本文中,我们提出了PGDIFF,通过引入部分指导,与现有作品相比,这种新观点更适合现实世界中的降级。我们的方法不是专门定义降解过程,而是建模所需的属性,例如高质量图像的图像结构和颜色统计,并在反向扩散过程中应用此指南。这些属性很容易获得,并且对退化过程没有任何假设。与先验的扩散结合在一起时,该部分指导可以在一系列恢复任务中提供吸引人的结果。此外,可以通过整合多个高质量的图像属性来扩展PGDIFF来处理复合任务,从而通过整合各自任务的指导来实现。实验结果表明,我们的方法不仅胜过现有的基于扩散的方法,而且还与特定于任务的模型竞争。
最近的视频介绍方法通过利用光学流以引导像素传播的参考帧或特征空间中的像素传播,从而实现了令人鼓舞的改进。但是,当蒙版面积太大并且找不到像素对应关系时,它们会产生严重的伪影。最近,Denois的扩散模型在产生多样化和高质量的图像时表现出了令人印象深刻的表现,并且已在许多作品中被用于图像插图。但是,这些方法不能直接应用于视频以产生时间连接的覆盖结果。在本文中,我们提出了一个名为Vipdiff的无训练框架,该框架在反向扩散过程中调节扩散模型,以产生时间连接的涂漆结果,而无需任何培训数据或对预训练的模型进行微调。Vipdiff将光流作为指导,从参考帧中提取有效的像素,以作为优化随机采样的高斯噪声的约束,并使用生成的结果来进一步的像素传播和条件生成。Vipdiff还可以通过不同的采样噪声产生各种视频介绍结果。实验表明,我们的Vipdiff在时空连贯性和保真度方面都超过了最先进的方法。
摘要。生成图像重建算法(例如调节条件扩散模型)在医学成像领域越来越流行。这些功能强大的模型可以将低信号比率(SNR)输入转换为具有高SNR的出现的输出。但是,输出可以具有一种称为幻觉的新类型错误。在医学成像中,这些幻觉对于放射科医生来说可能并不明显,但可能会导致诊断错误。通常,幻觉是指由机器学习模型引起的对象结构的估计错误,但是没有广泛接受的方法来评估幻觉幅度。在这项工作中,我们提出了一个新的图像质量指标,称为幻觉指数。我们的方法是计算从重建图像的分布到零幻觉参考分布的距离。为了评估我们的方法,我们对电子显微镜图像,模拟噪声测量和应用基于扩散的重现进行了数值实验。我们重复采样了测量和生成重建,以计算样品平均值和协方差。对于零幻觉参考,我们使用了应用于地面真理的正向扩散过程。我们的结果表明,较高的测量SNR导致相同的明显图像质量的幻觉指数降低。我们还评估了早期停止在反向扩散过程中的影响,并发现更适度的降解强度可以减少幻觉。我们认为,该指标对于评估生成图像重建或作为警告标签可能很有用,可以将医学图像中幻觉的程度告知放射科医生。
最近的生成方法显示出有希望的盲人恢复性能。他们通常将退化的图像投射到潜在空间,然后通过单阶段潜在优化或直接从启动编码来解码高质量的面孔。对投入的信仰产生细粒度的面部细节仍然具有挑战性。大多数现有的方法产生过度平滑的输出或改变身份。这可能归因于潜在空间中质量和分辨率之间的典型权衡。如果潜在的压缩高度压缩,则解码的输出对降解更为强大,但忠诚度较差。另一方面,更灵活的潜在空间可以更好地捕获错综复杂的偏僻,但是对于高度退化的面孔来说,极其难以优化。我们在VQGAN体系结构中引入了基于扩散的优势,该基于未腐烂的潜在嵌入的分布而引起了研究。我们迭代地恢复了降解的柜台上的清洁嵌入条件。此外,为了确保反向扩散轨迹不会偏离潜在的身份,我们训练一个单独的身份恢复网络,并使用其输出来限制反向差异。具体来说,使用可学习的潜在面膜,我们将面部识别网络的梯度添加到一个潜在特征的子集中,这些特征与像素空间中与身份相关的细节相关联,使其他功能未触及。在潜在空间中的感知和忠诚之间的分离使我们能够达到两全其美。我们对多个真实和合成数据集进行了广泛的评估,以验证我们的方法。
生成的AI模型和社交媒体的兴起引发了图像编辑技术的广泛兴趣。现实且可控的图像编辑现在对于内容创建,营销和娱乐等应用是必不可少的。在大多数编辑过程中的一个关键步骤是图像合成,无缝地将前景对象与背景图像集成。然而,图像构成的挑战带来了许多挑战,包括结合新的阴影或反射,照明错位,不自然的前景对象边界,并确保对象的姿势,位置和刻度在语义上是连贯的。以前关于图像合成的作品[5,30,32,59,61]专注于特定的子任务,例如图像融合,协调,对象放置或阴影一代。更多的方法[9,36,50,62]表明,可以使用扩散模型同时处理一些单独的组合方面(即,颜色协调,重新定位,对象几何调整和阴影/反射生成)[18,46]。这种方法通常以自我监督的方式进行训练,掩盖地面真相图像中的对象,并将蒙版的图像用作输入[9,62],或者在反向扩散过程中仅在掩模区域内deno [9,50]。因此,在本文中,我们提出了一个生成图像合成模型,该模型超出了掩码,甚至使用空掩码,在这种情况下,模型将自然位置在适合尺度的自然位置中自动合成对象。我们的模型是图像合成的第一个端到端解决方案,同时解决了图像合成的所有子任务,包括对象放置。因此,在推理过程中需要掩模作为输入,导致了几个限制:(i)对普通用户进行精确掩码可能是不乏味的,并且可能会导致不自然的复合图像,具体取决于输入蒙版的位置,规模和形状; (ii)掩模区域限制了生成,其训练数据不考虑对象效应,从而限制了合成适当效果的能力,例如长阴影和反射; (iii)物体附近的背景区域往往与原始背景不一致,因为该模型在面具覆盖的情况下不会看到这些区域。为了实现此目的,我们首先使用图像介绍来创建包括图像三重态的训练数据(前景对象,完整的背景图像和