摘要 — 反向散射通信已成为低功耗/无电池传感器节点开发的热门选择。然而,射频源与接收器距离对该通信系统工作范围的影响尚未得到准确建模。在本文中,我们提出了一种双基地反向散射系统覆盖图模型,该模型基于接收器选择性、接收器灵敏度以及接收器、射频源和标签的几何位置。为了验证我们提出的模型和模拟,我们使用低成本商用 BLE 接收器和定制设计的 BLE 反向散射标签进行了实验。我们还表明接收器选择性可能取决于干扰水平,并给出测量结果来表明这种依赖性如何将系统误码率与射频激励功率联系起来。
图1。天然TIO 2:NB(1 1 0)边界结构。(a),(b),(c)电子反向散射衍射(EBSD)图像质量和逆极图(IPF)地图,提供〜
耦合模式 电感 电感 电磁反向散射 工作频率 125kHz – 134kHz 13.56MHz 860MHz – 960MHz 天线线圈 线圈偶极子 最大工作距离可达 1m 附近:可达 1m 近距离:可达 10cm
成像雷达是一种主动照明系统。安装在平台上的天线以侧视方向向地球表面发射雷达信号。反射信号(称为回声)从表面反向散射,并在几分之一秒后在同一天线(单基地雷达)上接收。
图 2。左图:发射的激光脉冲(粗箭头)被导向大气、波长计和光谱仪,用于内部参考测量(LPO:低功率振荡器、PLL:锁相环、SHG:二次谐波生成、THG:三次谐波生成、RLH:参考激光头)。接收到的反向散射信号通过前置光学器件传输,然后由两个不同的光谱仪进行分析。一小部分反向散射信号被引导至 UV 相机以进行共对准(细虚线箭头)。累积电荷耦合器件 (ACCD) 检测入射光子,模拟数字转换器 (ADC) 转换信号。右图:用于 Mie 和 Rayleigh 通道的 ACCD 的简化操作原理。在成像区采集后,信号通过传输行移至存储区。从那里,电荷被推送到读出寄存器,最后推送到 ADC。信号电平按颜色编码,从黑色(无信号)和蓝色(低)到红色(高)。
混合元素粉末是金属添加剂粉末中合金粉末的新兴替代品,这是由于可与其生产的各种合金范围及其不开发新颖的原料所节省的成本所致。在这项研究中,通过在BE TI-185粉末上进行SLM,在通过Infra-Red成像和通过同步X射线衍射跟踪表面温度的同时,研究了SLM期间的原位合金和并发微观结构演变。然后,我们进行了mortem电子显微镜(反向散射电子成像,能量分散X射线光谱和电子反向散射衍射),以进一步深入了解微观结构的发展。我们表明,尽管放热混合有助于熔化过程,但激光熔化仅在合金和未混合区域的混合物中产生。全合金和一致的微观结构仅通过在热影响区域的进一步循环才能实现。2021作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
接触力是人类与周围物理世界互动的自然方式。然而,我们与数字世界的大多数互动主要基于简单的二元触觉(接触或非接触)。同样,当与机器人互动执行复杂任务(例如手术)时,包括大小和接触位置在内的更丰富的力信息对于任务执行非常重要。为了应对这些挑战,我们提出了 WiForce 的设计和制造,它是一种“无线”传感器,可以感知接触力的大小和位置。WiForce 通过将力的大小和位置转换为反向散射标签的入射 RF 信号的相位变化来实现这一点。因此,相位变化被调制到反向散射 RF 信号中,从而通过推断反射 RF 信号的相位来测量力的大小和接触位置。WiForce 的传感器设计用于支持高达 3 GHz 的宽带频率。我们在不同的环境下以无线方式评估力感应,包括通过幻影组织,并实现 0.3 N 的力精度和 0.6 mm 的接触位置精度。
摘要。预先指出了基于KRF和XECL准分子激光器的臭氧差异吸收激光雷达(DIAR),用于对流层中的白天和夜间测量。XECL激光用作“ OFF”波长发射极,而KRF激光的辐射在氢化代和氘池中被拉曼移位,以获得277 nm和292 nm“ ON”波长。用于范围0的测量值。5–4。5 km,使用了277 /308 nm,并且在4-10 km范围内使用了292 /308 nm。与弹性反向散射的同时,监测了氮气和水蒸气的XECL激光的拉曼反向散射。氮拉曼信号用于计算气溶胶反向散射和灭绝系数的计算,这些信号与Klett方法的结果与XECL弹性反向散射的结果进行了比较。获得的气溶胶纤维用于校正臭氧浓度。给出了LIDAR应用昼夜和季节性臭氧变化的一些例子。
分布式的声传感(DAS)允许将光纤变速(例如传统电信或工程电缆)变成密集的地震仪(即地震天线)可以连续几公里对地震波场进行采样(几乎)。DAS系统由审讯器和光纤电缆组成。das系统利用反向散射,这是一种现象,其中波浪遇到的反射体远小于其主要波长。在光纤中,当光脉冲与不同折射率的点(例如纤维中的杂质)相互作用时,会发生反向散射。egss,具有高温干岩层的人工地热储层,使用液压刺激,在高压下注入流体,以创建裂缝网络以进行热示驱动器。然而,诱导的地震性仍然是一个关注点(Grigoli等,2018)。为了解决这个问题,美国能源部在犹他州启动了锻造实验,重点是开发地热环境中诱导地震性的微震膜监测方法(Lellouch等,2021)。
根据 IHO 标准,SeapiX 水深测量与外部高质量运动参考单元相结合时非常适用。水下栖息地和地质纹理可以从海底的沿轨反向散射中得出。这两个阵列的电子可控能力可实现多种应用,包括渔业研究、生物量监测、气体泄漏监测、火山脱气……