摘要:车辆事故通常是由于驾驶时突然出现障碍物而发生的。驾驶员的不同响应时间可能会导致制动延迟或无法及时停止,从而导致碰撞。为了解决此问题,我们提出了一个使用高级机电技术技术的自主制动系统(ABS),该系统在车辆前部使用超声波发射器来发送超声波波。当这些波撞到障碍物时,它们会向后反弹并被超声接收器检测到。通过分析这些反射信号,系统可以通过微处理器计算到障碍物的距离,并通过微处理器相应地调整车辆的速度。在紧急情况下,微控制器可以控制并激活制动系统以快速有效地施加制动器,从而提高安全性。对该系统的重要增强是使用烧瓶的基于Python的应用程序的集成。此应用程序可以动态确定事件的位置,并使用实时地理数据将其传达给最近的紧急服务。通过GSM技术来促进此通信,该技术将警报信号和车辆的GPS位置发送给适当的当局,以确保迅速的响应和帮助,此外,可以扩展该系统以包括车间间通信功能。此功能使汽车可以共享有关其位置和速度的信息,从而提高道路合作和意识。这不仅减少了碰撞,而且有助于创造流量流畅。总体而言,自动制动系统旨在通过减少响应时间和停止距离来提高道路安全性,从而防止事故并显着增强紧急响应能力。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
半导体中的电子自旋是最先进的量子比特实现方式之一,也是利用工业工艺制造的可扩展量子计算机的潜在基础 [1–3]。一台有用的计算机必须纠正计算过程中不可避免地出现的错误,这需要很高的单次量子比特读出保真度 [4]。用于错误检测的全表面码要求在计算机的每个时钟周期内读出大约一半的物理量子比特 [5]。直到最近,自旋量子比特装置中的单次读出只能通过自旋到电荷的转换来实现,由附近的单电子晶体管 (SET) 或量子点接触 (QPC) 电荷传感器检测 [6–9]。然而,如果使用色散读出,硬件会更简单、更小,这利用了双量子点中单重态和三重态自旋态之间的电极化率差异 [10–13]。可以通过与量子点电极之一粘合的射频 (RF) 谐振器监测由此产生的两个量子比特状态之间的电容差异。量子点中的电荷跃迁也会发生类似的色散偏移,这样反射信号有助于调整到所需的电子占据 [14–16]。色散读出的优势在于它不需要单独的电荷传感器,但即使在自旋衰减时间较长的系统中,电容灵敏度通常也不足以进行单次量子比特读出 [17–23]。最近,已经在基于双量子点的系统中展示了色散单次读出 [24–28],但为了提高读出保真度,仍然需要更高的灵敏度。
近年来,人们对在室内环境中使用低成本无电池标签定位物体和人员的兴趣日益浓厚,以便在物流、零售、安防等不同领域实现多种应用 [1]。UHF Gen.2 射频识别 (RFID) 标准技术是目前最流行的物品识别解决方案。不幸的是,它在设计时考虑了识别而非定位,因此商业读取器只能获得粗略的位置信息。已经提出了一些方法来提高定位精度 [2],但它们通常在恶劣的传播环境中不可靠或需要读取器端昂贵的硬件(例如,大型天线阵列)。与此同时,一些新的实时定位系统 (RTLS) 应运而生,通过采用超宽带 (UWB) 信号并利用其精细的时间分辨能力提供高精度定位 [3]。然而,当前基于 UWB 的定位系统使用的有源标签电流消耗大于 50 mA,这与能量收集或无线电力传输技术的利用不兼容,因此不可避免地需要电池或极低占空比操作 [4]。最近,遵循与标准 Gen.2 RFID 系统相同的反向散射原理,已经提出了一些解决方案,以实现与 UWB 反向散射信号一起工作的无电池标签,在定位精度方面取得了有趣的结果(约 5-15 厘米)[5]–[12]。尽管基于反向散射的架构在低复杂度和低功耗方面具有良好的特性,但它存在强大的链路预算(由于反射信号导致的双向链路)问题,再加上 UWB 频段非常保守的监管功率发射限制,将其应用限制在非常短距离的场景中(覆盖范围 < 10 米)[13]。本文介绍了一种使用无电池标签的 RTLS,它能够通过使用节能的 UWB 脉冲发生器将范围扩大到 10 米以上。在描述了系统的主要功能块之后,报告了实验结果。该系统是在欧洲航天局 (ESA) 资助的“LOST”(通过 RF 标签定位太空物体)项目内开发的。LOST 的目的是研究合适的技术来定位部署或漂浮在国际空间站或未来空间站内的物体。这种“室内”空间应用旨在跟踪环境中存在的每个带标签的物体,以避免潜在的危险情况,并使宇航员不会浪费极其宝贵的时间寻找丢失的工具。