跟踪光伏农场时,主要约束要求 z 轴指向,以便反射光引导至目标 不跟踪时,移动到空闲阶段,反射器边缘朝向太阳,以防止杂散光。主要约束是 x 轴朝向太阳。 目前正在进行刚性和柔性体的指向误差分析 继续研究由于指向误差导致的能量传输损失(IAC 见!)
叠加原理 – 相干性 – 时间相干性和空间相干性 – 光干涉的条件。菲涅尔双棱镜 – 光波长的测定 – 反射时相位的变化。由于反射和透射光(余弦定律)而导致的平面波在薄膜上的斜入射 – 薄膜的颜色 – 具有两个非平行反射表面的薄膜的干涉(楔形薄膜)。金属丝直径的测定,反射光中的牛顿环。迈克尔逊干涉仪,使用牛顿环和迈克尔逊干涉仪测定单色光的波长。
典型的现象学空间域意识(SDA)任务依赖于设计一个在可见频谱中观察到的系统。可见带宽中的任务设计提供了与要求和其他指标的遗产共同点。然而,由于依赖于可见光中观察结果的反射光,诸如日食,照明场景差和较小的物体之类的问题阻碍了SDA任务。使用不同的频带进行SDA任务是对仅在可见的观察时所存在的某些局限性的解决方案。将SDA任务扩展到红外线还提高了威胁检测敏感性,该敏感性使有效载荷更深入,从而可以对Cislunar制度进行威胁检测监测。
本文回顾了高光谱遥感 (HRS) 技术在各种地质应用中的潜力,从岩性测绘到地壳丰度较低的经济矿物勘探。这项工作更新了对该主题的理解,从矿物光谱开始,到其通过大气校正、降噪、纯光谱端元检索和解混等不同程序在勘探矿床和碳氢化合物储层中的应用。除了线性解混外,还讨论了非线性解混和归因于反射光非线性行为的参数。包括一些案例研究,以证明该技术在不同地质勘探中的有效性。最后,指出了该领域的最新发展,如无人机的超光谱成像及其后果。
� NIR 技术分子键,例如水中的 O-H 和有机物中的 C-H,会吸收特定波长的红外光 (NIR)。给定波长的 NIR 反射能量与产品内吸收分子的数量成反比。NIR 技术是非破坏性的、非接触性的,可提供即时测量。ir-3 000 系列利用几种波长的近红外光 (NIR),以非常高的频率投射到产品上。然后使用数字增强检测系统测量反射光,该系统每秒分析数据数千次。功能强大的嵌入式 PC 用于处理、存储和显示所需数据,其精度比其他传统传感器稳定十倍。测量结果比目前任何传感器都准确得多。
a。如果波长1.0a 0的X射线散射形成碳块,则计算后方电子的康普顿偏移和动能。在90 0时向入射光束看待散射的辐射。b。假设来自1000瓦灯的所有能量均匀辐射;计算辐射电场强度和磁场的平均值,距灯距离为2 m。c。牛顿的环通常以波长6000 a 0的反射光观察到。第10个暗环的直径为0.50厘米。找到镜头的曲率半径和膜的厚度。d。单个宽度为0.5 cm的单个缝隙的衍射模式可通过40 cm的焦距的镜头发现。计算第一个黑暗与下一个明亮的边缘与轴的距离。给定波长4890a 0。e。当波长1400nm的光传播时,计算核心直径40μm和1.50的核心直径40μm和1.50的V-数字。还计算纤维可以支持传播的模式数量。
摘要:我们报告了如何使用对全尼克磁性磁性晶体(MPC)的斜向磁磁光(TMOKE)增强的空间来解决空间解析横向磁光kerr效应(TMOKE)增强的观察。首先,MPC中表面等离子体的激发导致15.3μm(18λ)GH偏移。然后,在存在横向磁场的情况下,在实验中,由GH偏移引起的反射光的侧向空间强度分布的调制[Tmoke(x)]达到4.7%。与MPC中常规TMOKE测量值相比,空间解析的Tmoke(X)值高几倍。在GH偏移下,空间分辨的磁光效应的概念可以进一步扩展到其他磁极纳米版本,以增强磁光效应,传感和光调制应用。关键字:鹅 - ha nchen换移,磁性粒细胞,磁性晶体,表面等离子体,横向磁光kerr效应■简介