标题:迈向多光谱红外成像 演讲者姓名:Elahe Zakizade 博士 公司名称/研究所:弗劳恩霍夫微电子电路与系统研究所 项目名称:Eurostars SPEKTIR 资助小组:Eurostars 摘要是否可以在网站上发表: ☒ 是 ☐ 否 提供最多 500 字的摘要。使用 ARIAL 字体,11 号。如果使用图表,文本和图表必须保持在这一页内。 近年来,热成像相机市场不断增长。主要驱动因素是基于微测辐射热计技术的非制冷红外焦平面阵列 (IRFPA),因为它们是低成本成像仪,不需要额外的复杂和昂贵的冷却系统。大多数当前的热成像应用都基于长波红外 (LWIR) 辐射的检测,波长覆盖从 8 μm 到 14 μm,对人体温度敏感,不仅可用于军事应用,而且在智能手机、监控摄像头或自动驾驶汽车等大众市场应用中也越来越受欢迎。此外,非制冷热像仪在波长范围为 3 μm 至 5 μm 的中波红外 (MWIR) 中也能敏感。MWIR 传感器可用于监测温度高达几百摄氏度的“热源”、检测危险或易燃气体或环境监测等应用。红外区域多光谱成像的实现引起了广泛关注,因为它能够可视化和组合来自 MWIR 和 LWIR 区域的信息。微测辐射热计作为非制冷 IRFPA 的传感元件,采用热原理运行。它们是独立的隔热传感器膜。它们吸收红外辐射并将其转化为温度上升。微测辐射热计膜的温度变化会导致电阻随入射功率的变化而变化。CMOS 读出电路将微测辐射热计随温度变化的电阻变化转换为数字值并生成图像。实现多光谱吸收的一种有前途的方法是使用等离子体超材料吸收器 (PMA)。在过去的几十年中,等离子体领域因其各种潜在应用而备受关注,尤其是在可见光谱范围内。等离子体结构的研究也已扩展到红外区域,以实现高吸收率并调整中波红外和长波红外光谱区域的吸收波长。实现适用于弗劳恩霍夫 IMS 微测辐射热计技术的合适吸收器的有希望的候选材料是金属-绝缘体-金属 (MIM) 结构,该结构由上部周期性金属结构、中间介电层和下部金属反射层组成,以在所需的吸收波长下产生强局部表面等离子体共振。材料选择,弗劳恩霍夫 IMS 研究了沉积技术和图案化工艺,以实现高灵敏度的多光谱热成像。弗劳恩霍夫 IMS 将报告其在实现多光谱红外成像方面取得的进展。它将展示用于多光谱红外成像的带有等离子体超材料吸收器的微测辐射热计的最新模拟结果和实验表征。