摘要我们介绍了Mesogan,这是一种生成3D神经纹理的模型。通过结合生成对抗网络(stylegan)和体积神经场渲染的优势,这种新的图形原始形式代表了中尺度的出现。原始性可以用作神经反射率壳的表面;表面上方的薄体积层,其外观参数由神经网络定义。为了构建神经外壳,我们首先使用带有仔细随机傅立叶特征的stylegan生成2D特征纹理,以支持任意尺寸的纹理而无需重复伪影。我们以学习的高度功能增强了2D功能纹理,这有助于神经场渲染器从2D纹理产生体积参数。为了促进过滤,并在当前硬件的内存约束中启用端到端培训,我们使用了层次结构纹理方法,并将模型训练在3D中尺度结构的多尺度合成数据集上。我们提出了一种在艺术参数上调节Mesogan的可能方法(例如,纤维长度,链的密度,照明方向),并演示并讨论整合基于物理的渲染器。
紫外纳秒激光退火 (LA) 是一种强大的工具,需要严格限制的加热和熔化。在半导体技术中,随着所提出的集成方案的复杂性不断增加,LA 的重要性也随之增加。优化 LA 工艺以及实验设计具有挑战性,尤其是当涉及具有各种形状和相的复杂 3D 纳米结构系统时。在这种情况下,需要对激光熔化进行可靠的模拟,以优化工艺参数并减少实验测试次数。这产生了虚拟实验设计 (DoE)。𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 合金如今因其与硅器件的兼容性而被使用,从而能够设计应变、载流子迁移率和带隙等特性。在这项工作中,用有限元法/相场方法模拟了松弛和应变𝑆𝑖 1− 𝑥 𝐺𝑒 𝑥 的激光熔化过程。具体来说,我们使用实验数据校准了合金结晶相和液相的介电函数。我们强调了重现不同聚集状态下空气与材料界面的精确反射率的重要性,以正确模拟该过程。我们间接发现了熔体硅锗光学行为的有趣特征。
摘要:化学计量技术,例如部分最小二乘(PLS)回归,已应用于各种化学问题,包括复杂混合物中分析物的多组分分析。尽管如此,很少有实验室教学练习的例子涉及学生从基于红外光谱的仪器中获取化学数据,然后使用PLS进行定量化学计量分析。在本文中,我们提出了一项计算活动,该计算活动在仪器分析实验室环境中介绍了本科生,使用衰减的总反射率 - 较较高的转换红外(ATR-FTIR)光谱谱图进行数据获取,然后使用PLS进行数据分析。活动的第一部分涉及学生创建由p- cymene和limonene组成的二元萜烯组件的混合设计。然后使用ATR-FTIR光谱仪分析了这些混合物,在那里学生熟悉了该仪器,并显示了如何使用其生成的FTIR光谱来表征和区分上述萜烯。活动的第二部分涉及从第一部分中获得获得的FTIR光谱数据的预处理,然后同时使用PLS确定准备好的萜烯。根据学生的调查,可以得出结论,这项方便且廉价的活动最终成功地介绍了使用ATR-FTIR的化学计量学用于对萜烯进行定量分析。关键字:上限本科,分析化学,基于计算机的学习,化学计量学,红外光谱,光谱■简介这项易于做的两周活动可以用作仪器分析实验室类别的独立活动,甚至可以集成在应用光谱和化学计量学的高级课程中。
在冰/海洋系统中反射和吸收事件的阳光如何反射和吸收的融化北极海冰覆盖的最高部分的微观结构有效地影响,有效地散射层(SSL)散射太阳辐射(SSL)太阳能辐射,并与冰冰相比与冰冰相比与Sss sss sss sss相比相比相比将冰的表面固定相对较高。反照率的测量提供了有关如何通过SSL划分传入的短波辐射的信息,并且对改善气候模型参数化的关键是至关重要的。但是,SSL的物理和光学特性之间的关系仍然受到限制。到目前为止,辐射传输模型一直是推断SSL微结构的唯一方法。在2 0 19–2 0 2 0的马赛克探险中,我们采集了样品,并首次使用X射线微型计算的层析成像直接测量了裸海冰上SSL的微观结构。我们表明,SSL具有高度各向异性,粗糙和多孔的结构,表面的光学直径和密度较小,随着深度的增加。随着熔融表面消融,SSL会再生,在整个熔体季节中保持其微观结构的某些方面。我们使用辐射转移模型的微结构测量值来提高我们对85 0 nm波长下物理性质与光学性质之间关系的理解。When the microstructure is used as model input, we see a 1 0 –15% overestimation of the reflectance at 85 0 nm.This comparison suggests that either a) spatial variability at the meter scale is important for the two in situ optical measurements and therefore a larger sample size is needed to represent the microstructure or b) future work should investigate either i) using a ray-tracing approach instead of explicitly solving the radiative transfer方程或II)使用更合适的辐射转移模型。
摘要 - 末期,高光谱(HS)成像已成为通过联合获取空间和光谱信息来远程识别兴趣区域的强大工具。但是,就像在大多数成像技术中一样,数据采集期间可能会发生不良影响,例如噪声,光强度的变化,温度差异或光学变化。在HS成像中,可以使用反射校准阶段和光学过滤来减弱这些问题。然而,光学填充可能会引起某种失真,这可能会使后图像处理阶段复杂化。在这项工作中,我们提出了一项重新反映校准的新建议,该建议可以补偿在获得HS图像期间的光学变化。对具有特定光谱响应的各种材料的合成正方形的HS图像进行了评估。我们的提案结果使用K-均值算法的两次分类测试显示出高性能,其精度为97%和88%;与获得77%和64%精度的文献相比,与标准反射校准相比。这些结果说明了所提出的配方的性能增益,除了维持HS图像中的特征性特征外,还可以使结果反射到固定的下层和上限,从而避免了后校准后的归一步步骤。索引术语 - 光谱成像,光学滤波器,反射校准
摘要。北冰洋对太阳辐射的定向反射主要由两种主要表面类型形成:海冰(通常被雪覆盖)和开阔海洋(无冰)。在它们之间的过渡区,即边缘海冰区 (MIZ),表面反射特性由两种表面类型的反射率的混合决定。在 MIZ 上应用的检索方法需要考虑混合方向反射率;否则在 MIZ 上检索到的大气参数可能会出现不确定性。为了量化这些不确定性,需要分别测量 MIZ 的反射特性。因此,在本案例研究中,使用在无云条件下 20 分钟低空飞行期间用数字鱼眼镜头收集的机载测量值,推导出 MIZ 中非均匀表面(海冰和公海混合)的平均半球方向反射因子 (HDRF)。为此,开发了海冰掩模以将反射率测量值与海冰和公海分开,并推导出各个表面类型的单独 HDRF。将相应的结果与文献中的模拟和独立测量值进行了比较。结果表明,由于波浪衰减,MIZ 中的公海 HDRF 与均匀海洋表面不同。使用两种表面类型的单个 HDRF 和海冰分数,描述方向反射率的混合 HDRF
摘要:本文介绍了石墨和还原氧化石墨烯 (RGO) 反射率的研究,这是电子设备保护的重要参数。这些材料应保护电子电路免受外部和内部反射辐射的影响。研究重点是比较两种材料在金属层上的反射率。对纯材料(不含任何添加剂,如聚苯乙烯泡沫、树脂、蜡等)进行了介电常数和磁导率等恒定电磁参数的测量。测量是在 100 MHz 至 10 GHz 微波频率范围内的同轴线上进行的。测量显示反射功率值很高,石墨的反射功率超过 90%,而 RGO 仅反射 80% 的入射功率。此外,由于还原氧化石墨烯中的半波长效应,反射系数降低至 70%。
摘要:单片高对比度光栅 (MHCG) 由单片层中图案化的一维光栅组成,可提供高达 100% 的光功率反射率,并且可以在现代光电子学中使用的几乎任何半导体和介电材料中制造。MHCG 可实现单片集成、偏振选择性和多功能相位调谐。它们可以比分布式布拉格反射器薄 10 到 20 倍。MHCG 的亚波长尺寸大大降低了确保 MHCG 条纹侧壁光滑度的可能性,并使在蚀刻过程中精确控制 MHCG 条纹横截面的形状变得困难。问题在于,改进蚀刻方法以获得设计所假设的完美横截面形状是否更有利,或者是否有可能使用给定蚀刻方法提供的形状找到能够实现高光功率反射的几何参数。在这里,我们进行了一项数值研究,该研究由使用多种常见的表面纳米级成型方法在不同材料中制造的 MHCG 的实验表征支持。我们证明具有任意横截面形状的 MHCG 条纹都可以提供接近 100% 的光功率反射率,这大大放宽了它们的制造要求。此外,我们表明,对于准梯形横截面的 MHCG,可以实现超过 99% 的光功率反射率和超过 20% 的创纪录光谱带宽。我们还表明,如果波纹幅度小于 MHCG 周期的 16%,MHCG 条纹的侧壁波纹对 MHCG 光功率反射的影响很小。使用最新的表面蚀刻方法可以实现这种条纹制造精度。我们的研究结果对于设计和生产采用 MHCG 的各种光子器件具有重要意义。横截面形状的灵活性有利于可靠地制造高反射率亚波长光栅镜。这反过来又将使制造单片集成的高品质因数光学微纳腔器件成为可能。关键词:单片高对比度光栅、亚波长光栅、光功率反射
1 莱比锡大学莱比锡气象研究所,德国莱比锡 2 阿尔弗雷德·魏格纳研究所,亥姆霍兹极地和海洋研究中心,德国不来梅港 * 现在就职于:奥斯陆大学地球科学系,挪威奥斯陆
注意:新西兰钢铁有限公司产品和服务的购买者和用户必须根据自己的情况对产品进行评估。有关产品规格、用途或应用的所有疑问,请直接联系新西兰钢铁有限公司,电话 0800 697 833。新西兰钢铁有限公司保留修改产品、技术、设备和声明的权利,以反映其产品制造和应用方面的改进。本手册中包含的信息不影响新西兰钢铁有限公司的标准销售条款和条件。如果本信息与标准条款和条件发生冲突,则以标准条款和条件为准。COLORSTEEL® 是新西兰钢铁有限公司的注册商标。