传统镜子在反射时会改变圆偏振光的手性。然而,人们对设计和制造手性保持镜子以及手性反射超表面的需求日益增长,这些镜子的反射光子自旋态可调,可在紫外和可见光域的宽波长范围内工作。到目前为止,大多数手性镜都是通过自上而下的技术制备的,例如电子束光刻,这些技术成本非常高,并且难以扩展到宏观设备。这里介绍了一种有效的自下而上的策略,用于通过使用逐层组装取向银纳米线层来制造手性镜,这些银纳米线层是通过在半反射银层上进行掠入射喷涂制备的。由此产生的手性超表面对紫外、可见光和近红外域中宽波长范围内的圆偏振光显示出结构相关的差分反射率,达到了极高的品质因数。它们的差分反射率可达到最大偏振效率的 95%,且反射光的旋向性部分保留。这些具有可调手性反射率的大面积手性镜在光学、传感和手性光与物质相互作用等各个领域都有着广阔的应用前景。
摘要。迄今为止,印度尼西亚的遗产建筑物的保存技术仍然仅限于物理测量,其中大多数基于手动记录。因此,缺乏准确性,成本和时间消耗通常会导致决策过程中对关键信息的误解。该部分包括由高度相对湿度引起的凝结引起的物理损害(即霉菌生长,剥落,漏水)。得益于高级激光扫描技术的开发,可以获得高精度点云数据集以进行表面性能分析。此外,本研究提出了一种综合计算方法,用于通过利用根据点云数据计算出的光学和热特性来检测遗产建筑物中的冷凝风险。该提出的方法专门采用Blinn-Phong双向反射率(BRDF)模型来计算基于入射角和材料反射率的材料中的分布式反射率。随之而来的是,点云测量还与Flir One Pro IR摄像机和Hobo数据记录仪结合在一起,以分析建筑物表面的热性能。最终,这项研究将为建筑师提供对遗产建筑表面凝结潜在凝结风险的更好理解,以便他们可以执行早期的检测任务。
图2:(a)SI基板上GESN MQW VCSE结构和GESN MQW的室温PL光谱。插图显示了参考GESN/GE MQW(S1)的峰值拟合。(b)从GESN/GE MQW VCSE结构和参考GESN/GE MQW的测得的室温PL光谱中提取的PL增强因子。测量的GESN/GE MQW VCSE结构的反射率谱。(c)GESN/GE MQW VCSE结构的模拟PL增强因子和反射率光谱。(d)GESN/GE MQW VCSE结构中的分布分布折射率和电场幅度,显示了光场和活动MQW区域之间的重叠。
尺寸反射率直接方法的测量缺乏足够的灵敏度来测量激光方面的超低反射率。但是,在过去的二十年中已经开发了各种指导方法[5] [6] [7]。在这项工作中,采用了马里兰州大学[8]开发的自发发射转换(SET)方法。此方法通过将ASE光谱转换为信号组件与大多数噪声正交的傅立叶域,从而提供了高信号与噪声比(SNR)。图5显示了SET方法与TFCALC建模结果之间的比较。实验和理论在光谱的长波长部分中非常吻合。在较短的波长处延伸的差异被认为主要是由于ASE信号低,因此该区域的SNR差。
封面显示了我们对Fe/Si + 11 B 4 C(前)和Fe/Si(后)多层的研究结果。可以比较电子衍射图像,Gisaxs原始数据和X射线反射率(也可以用于艺术目的)。也可以在反射率曲线之间的区域内显示多层的示意图。,fe/si + 11 b 4 c(前)代表未来,而fe/si(背面)描绘了过去。此外,艺术品也可以看作是电子衍射图像中心中的中子源,而gisaxs和XRR则展示了更改梁特性的外向光束和光学元件,在梁的末端,您会找到样品本身,模仿我研究的中心部分。封面的脊柱还显示了Fe/Si + 11 B 4 C(上)和Fe/Si(下图)多层的TEM图像。