图1。反射的共聚焦显微镜原理,用于测量气道上皮培养物上的ASL高度。a:激光束的示意图通过在空气液体界面上生长的差异气道上皮层,并在每个界面反射的光的一部分随着折射率反转,以反转其传播方向。为了清楚起见,反射信号与激光光分开描述。FEP:氟化乙烯丙烯。 b:从正常(野生型)鼠原发性气管上皮培养物获得的反射信号,具有488 nm激光器,通过Xz -scanning和荧光图像在平行于488 nm的细胞层(Calcein -AM)(Calcein -AM)和561 Nm(Rhodamine dextran)的488 nm平行记录。 箭头标志着从荧光强度的以下线曲线中取出的位置。 中反射光的峰FEP:氟化乙烯丙烯。b:从正常(野生型)鼠原发性气管上皮培养物获得的反射信号,具有488 nm激光器,通过Xz -scanning和荧光图像在平行于488 nm的细胞层(Calcein -AM)(Calcein -AM)和561 Nm(Rhodamine dextran)的488 nm平行记录。箭头标志着从荧光强度的以下线曲线中取出的位置。
在14 GPA的压力下,最近在LA 3 Ni 2 O 7-δ中发现了超导性特征,超导过渡温度约为80 K,引起了相当大的关注。研究电子结构的一个重要方面是辨别La 3 Ni 2 O 7-δ的电子接地状态与Cuprate超导体的母体状态(一种具有远距离抗铁磁性的电荷转移绝缘子)。通过X射线吸收光谱法,我们揭示了氧配体对Ni离子的电子接地态的影响,显示出类似于丘比特的电荷转移性质,但具有独特的轨道结合。此外,在LA 3 Ni 2 O 7-δ纤维中,我们使用谐振X射线散射测量值检测到Ni L吸收边缘的超晶格反射(1/4、1/4,L)。对共振的进一步检查表明,反射起源于Ni d轨道。通过评估反射的方位角依赖性,我们确认存在截面抗铁磁性旋转顺序和具有相同周期性的电荷的各向异性。我们的发现揭示了这两个成分之间的微观关系,在反射的散射强度的温度依赖性中。这项研究丰富了我们在高压下LA 3 Ni 2 O 7-δ中高温超导性的理解。
将一系列抽头延迟线相干相加的系统与广泛的信号处理应用相关,横向滤波就是一个突出的例子。另一个例子是诱饵中继器。物体将根据其形状和物体相对于信号的速度修改从其反射的任何信号。这允许敌对询问者识别此类物体的性质,如果物体是军舰或飞机等军事平台,则不可取。一种解决方案是响应询问信号的接收,人工合成假的特征回声特征。因此,例如,部署在海上的一系列诱饵浮标可以模拟海军舰队的存在,从而可能破坏敌人的计划。
发生脊髓损伤时,通常不会完全损坏,但是损伤通常仅影响一个或多个水平的骨髓伸出的混凝土部分。 div>即使如此,这项工作也希望证明该材料即使在病变完成时也可以增强神经组织的重新连接。 div>ICMM-CSIC的研究人员,工作的主要作者之一 conchi Serrano:“我们的团队表明,这些泡沫在大鼠脊髓中产生了一个预反射的环境,但我们也想这样做扩大了损伤的大小和改变脊柱水平,我们已经设法复制了结果。” div>
这里,S 是通过模拟得出的散射矩阵,其中对麦克斯韦方程进行了数值求解。参数 r 1 、t 1 、r 2 和 t 2 分别是 E in1 和 E in2 的单束光束的反射和透射系数。值得注意的是,在这种配置下,假设在此设置中互易性保持不变,则两个入射方向的透射系数相同(即 t = t 1 = t 2 )。反射的不对称性源于设计结构相对两侧排列的十字形石墨烯贴片的不同尺寸。
这个实验背后的科学原理 所有植物都需要叶绿素来进行光合作用,但叶绿素并不只有一种。向阳植物的叶子中含有更多的叶绿素“a”,这是捕获光线的主要色素,可以吸收光谱两端的光线。在阴凉处生长的植物含有更多的不同色素:叶绿素“b”,它可以吸收从其他叶子反射的部分波长的光线(光谱的蓝色端)。能在阴凉处生长的植物每平方厘米的叶绿体数量也更多,叶绿体也更大,因此它们总体上可以捕获更多的光线。
技术,并试图防止遮光盘及其外壳的支撑结构通过光的衍射和反射干扰图像。为了减少从结构和光盘反射的杂散光,必须做到准确无误。活动发现,测试结果通常不符合模拟结果。我们发现,当用于模拟日冕的光源在仪器和用于聚焦光线的镜子之间来回反射时,测试场地设备中的微小缺陷会产生异常 - 导致图像中出现额外的杂散光源。反复进行实际测试是发现、解决和重新测试此类问题的唯一方法。