证据表明,意识流被解析为瞬态大脑状态,这些状态表现为全局神经元活动的离散时空模式。脑电图 (EEG) 微状态被认为是这些持续几分之一秒的瞬态稳定大脑状态的神经生理学关联。为了进一步了解 EEG 微状态动态与意识之间的联系,我们连续记录了 23 名外科患者从清醒状态到昏迷状态的高密度 EEG,这些患者由静脉麻醉剂丙泊酚的浓度逐步增加而引起。除了微状态动力学的常规参数外,我们还介绍了一种估计微状态序列复杂性的新方法。手术麻醉下的大脑活动显示典型微状态的序列复杂性降低,变得更稀疏且持续时间更长。然而,我们观察到,随着镇静深度的增加,微状态的时间动态和复杂性最初有所增加,导致出现明显的“U 形”,这可能与中等剂量异丙酚引起的反常兴奋有关。我们的研究结果支持以下观点:大脑在正常情况下处于亚稳态,在有序和混乱之间保持平衡,以便灵活地从一种状态切换到另一种状态。EEG 微状态的时间动态表明,这种稳定性和过渡性之间的关键平衡发生了变化,从而导致意识状态改变。
摘要 大量研究表明,观看示例图像刺激往往会限制创造性想法的产生。然而,这种视觉注视在创造性认知中背后的神经认知机制尚不清楚。在本实验中,我们探索了示例图像是否会影响创造性想象以及与视觉对象识别相关的大脑区域内的神经活动模式。参与者首先观看带有高约束和低约束标签的示例图像(模糊的线条图)。高约束标签与线条图相似,而低约束标签则不然。接下来,参与者想象相同的线条图的新标签,并删除初始标签。与我们的预测一致,将提示标签与新生成的标签进行比较的语义距离分析显示,与低约束试验相比,高约束试验的平均语义距离较低(即创造性想法较少)。通过表征相似性分析,我们还证明了在右颞下回、右颞中回和右枕上回中,从物体识别到高约束想象试验,神经模式相似性是反常或相关的(不太相似)。从广义上讲,这些发现表明,突出的视觉示例可能会引导形成强大的心理表征,从而限制创造性想象。这项研究还迈出了第一步,旨在确定与接触注视示例后产生新的创造性想法的艰难过程相关的神经认知特征——特别是在腹侧视觉流中物体识别/表征的早期阶段。
摘要:为了实现高温下的量子反常霍尔效应(QAHE),采用磁邻近效应(MPE)的方法,破坏拓扑绝缘体(Bi0.3Sb0.7)2Te3(BST)基异质结构中的时间反演对称性,并与具有垂直磁各向异性的亚铁磁绝缘体铕铁石榴石(EuIG)形成异质结构。这里我们证明了大的异常霍尔电阻(R AHE),在 300 K 时超过 8 Ω(ρ AHE 为 3.2 μ Ω · cm),并在 35 个 BST/EuIG 样品中维持到 400 K,超过了 300 K 时 0.28 Ω(ρ AHE 为 0.14 μ Ω · cm)的过去记录。大的 R AHE 归因于 BST 和 EuIG 之间原子突变的富 Fe 界面。重要的是,AHE 环的栅极依赖性随着化学势的变化没有显示出符号变化。这一观察结果得到了我们通过在 BST 上施加梯度塞曼场和接触势进行的第一性原理计算的支持。我们的计算进一步表明,这种异质结构中的 AHE 归因于固有的贝里曲率。此外,对于 EuIG 上的栅极偏置 4 nm BST,在高达 15 K 的负顶栅电压下观察到与 AHE 共存的明显的拓扑霍尔效应(THE 类)特征。通过理论计算的界面调谐,在定制的磁性 TI 基异质结构中实现了拓扑不同的现象。关键词:拓扑绝缘体、磁性绝缘体、异常霍尔效应、磁邻近效应、第一性原理计算、贝里曲率
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 分析序列和级数的性质。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 UNIT-I:矩阵 矩阵:矩阵的类型,对称;Hermitian;斜对称;斜 Hermitian;正交矩阵;酉矩阵;通过梯形和标准形式对矩阵进行秩计算,通过高斯-乔丹方法求非奇异矩阵的逆;线性方程组;求解齐次和非齐次方程组。高斯消元法;高斯赛德尔迭代法。第二单元:特征值和特征向量线性变换和正交变换:特征值和特征向量及其性质:矩阵的对角化;凯莱-哈密尔顿定理(无证明);用凯莱-哈密尔顿定理求矩阵的逆和幂;二次型和二次型的性质;用正交变换将二次型简化为标准形式第三单元:数列与级数序列:数列的定义,极限;收敛、发散和振荡数列。级数:收敛、发散和振荡级数;正项级数;比较检验、p 检验、D-Alembert 比率检验;Raabe 检验;柯西积分检验;柯西根检验;对数检验。交错级数:莱布尼茨检验;交替收敛级数:绝对收敛和条件收敛。 UNIT-IV:微积分中值定理:罗尔定理、拉格朗日中值定理及其几何解释和应用、柯西中值定理。泰勒级数。定积分在计算曲线旋转表面面积和体积中的应用(仅限于笛卡尔坐标系)、反常积分的定义:Beta 函数和 Gamma 函数及其应用。 UNIT-V:多元微积分(偏微分和应用)极限和连续性的定义。偏微分;欧拉定理;全导数;雅可比矩阵;函数依赖性和独立性,使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
当前的研究与开发:通过适当调整竞争相的体积分数,我们实现了创纪录的巨大磁阻值(在 90 kOe 外部磁场中约为 10 15 %)。之前世界上任何地方已知的 MR% 约为 10 7 %),以及半掺杂 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 锰氧化物化合物中的超尖锐亚磁转变 [NPG Asia Materials (IF: 10.76), 10 (2018) 923]。我们仅通过调整 PLD 制备的氧化物外延 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 薄膜中的应变(应变工程)就增强了磁阻 [J. Magn. Magn. Mater. 503 (2020) 166627]。开发了采用PLD在商用热氧化Si衬底上生长优质半金属La 0.7 Sr 0.3 MnO 3 超薄膜的“两步”技术,并观察到跨晶界的自旋极化传输 [J. Magn. Magn. Mater. 527 (2021) 167771]。制备了(Sm 1-y Gd y ) 0.55 Sr 0.45 MnO 3 (y = 0.5 和 0.7)化合物,并表明晶界处的自旋极化隧穿(SPT)传输机制对化合物低场磁阻的增强起着至关重要的作用 [J.Phys: Condens. Matter 33 (2021) 305601]。报道了纳米晶 (La 0.4 Y 0.6 ) 0.7 Ca 0.3 MnO 3 化合物中由粒径驱动的非格里菲斯相向格里菲斯相的改性以及磁阻的大幅增强 [J. Alloys & Compound 745 (2018) 753]。制备了铁磁性 (La 0.67 Sr 0.33 MnO 3 ) - 电荷有序 (Pr 0.67 Ca 0.33 MnO 3 )、核壳纳米结构,并在更宽的温度范围内观察到了较大的磁热熵变值 (-∆SM ) [J. Magn. Magn. Mater. 436 (2017) 97]。在室温附近观察到了 La 0.83 Sr 0.17 MnO 3 化合物中显著较大的磁热效应,可视为磁制冷材料 [Physica B 545 (2018) 438]。我们在制备的 BiGdO 3 化合物中展示了低温下的巨磁热效应(∆SM = 25 J kg -1 K -1 & ∆T= 14.8K),并解释了其由于短程磁关联的存在而产生的成因 [J. Alloys and Compounds 846 (2020), 156221]。我们利用磁热效应构建了所制备的单晶 Sm 0.50 Ca 0.25 Sr 0.25 MnO 3 化合物的复磁相图 [J. Magn. Magn. Mater. 497 (2020) 166066]。对采用移动溶剂浮区炉制备的单晶 Sm 0.5 Ca 0.25 Sr 0.25 MnO 3 化合物的磁相变进行了实空间成像,并观察到了亚微米长度尺度上的 AFM-FM 相的存在 [J.Phys: Condens. Matter 33(2021) 235402]。我们已经证明了核心和表面自旋之间的短程磁相互作用在纳米晶掺杂锰氧化物中的交换偏置和记忆效应中的主导作用 [J. Alloys and Compounds 870 (2021), 159465]。与通常使用的磁化数据相反,利用反常霍尔效应研究了 skyrmion 载体材料 Co 3.6 Fe 4.4 Zn 8 Mn 4 的临界行为和相图。这为使用反常霍尔效应研究 skyrmion 载体和其他薄膜多层、介观器件等中的临界现象开辟了新方向。这对 skyrmion 载体材料的开发和未来 skyrmionic 存储器件的开发大有裨益 [J. of Alloys and Compounds 960 (2023) 170274]。
Sarah Ihlenfeld a、Joshua C. Hall a 和 Yang Zhou b https://doi.org/10.37625/abr.25.1.25-35 摘要 Hall 等人 (2010) 开发了一个增长模型,其中人力资本和物质资本的分配和生产力取决于一个国家制度的质量。我们将他们的模型应用于 1980 年至 2000 年的美国各州。使用北美经济自由度作为制度质量的衡量标准,我们发现只有在平均 EFNA 得分高于 5.91 的州,人力资本的增加才会导致人均产出增加。与跨国情况不同,物质资本总是对人均产出产生正影响。关键词 经济自由、人力资本、经济增长、移民 引言 世界银行经济学家 Lant Pritchett (2001) 是第一批指出跨国数据显示人力资本水平上升与人均产出增长率之间缺乏关联的经济学家之一。考虑到个人教育回报率很高,这一发现令人惊讶。Pritchett 提出了三个可能的答案来解答这个难题。首先,糟糕的制度环境实际上可能具有足够多的反常激励,使得更多的教育会导致更低的经济增长。其次,对受过教育的工人的需求可能非常低迷,以至于大大降低了教育的边际回报率。第三,许多国家的教育水平可能非常低,以至于受教育年限越多并不意味着人力资本越多。1 Hall 等人。 Hall 等人 (2010) 使用 1980 年至 2000 年 96 个国家的数据对第一个假设进行了实证检验。使用两种不同的制度质量衡量标准——《国际国家风险指南》中的“征用风险”和《世界经济自由度指数》——发现人力资本和物质资本增加对人均产出的影响取决于制度质量。
zqtian@xmu.edu.cn表面增强的拉曼光谱(SERS)的领域是在1970年代中期开始的,并于1990年代中期恢复。在1974年,依赖于电化学潜力的第一表面拉曼光谱是从Fleischmann,Hendra和McQuillan [1]的吡啶分子中观察到的。这一成就源于他们在拉曼光谱法应用于电化学方面的开创性工作。实际上,这是第一个SERS测量,尽管当时还没有被认为。van Duyne和Jeanmaire很快就仔细地设计了一种测量表面增强因子的程序,因此发现增强因子的阶段为10 5 -10 6。在旷日持久的审查过程之后,这大概是由于审稿人不愿相信表面增强的非正统概念,他们的论文最终于1977年发表[2]。独立地,克雷顿和阿尔布雷希特在同年发表了有关SERS的论文[3]。在1978年,Moskovits首先解释了表面等离子体对粗糙银电极对SERS增强的影响,并预测在覆盖有吸附剂的Ag和Cu胶体可能会发生相同的效果[4]。Creighton等人使用AG和AU胶体对该预测进行了实验验证,并且该效果被Van Duyne在1979年被列为表面增强的拉曼散射(SERS)[5]。在过去的50年中,SERS经过了曲折的途径,发展为强大的诊断技术[5,6]。我们可以从1970年代发现SER的伟大先驱和故事中学到什么?物理。我的演讲将主要通过讨论以下问题来提供历史但前瞻性的主题。为什么要挑战教科书以开设新的科学领域?1990年代,纳米科学(纳米驱动的SER)的sers研究是如何提高的?Will AI会在SERS的研究和应用中迎来一个新时代,并突破2020年代[7]的SERS(AI-DRIENS SERS)的开发瓶颈?参考文献[1] Fleischmann M,Hendra PJ,McQuillan AJ,吡啶的拉曼光谱吸附在银电极,化学。Lett。 (1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。 化学。 (1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。 am。 化学。 Soc。 (1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。 物理。 (1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。 nat。 修订版 mater。 (2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。 化学。 社区。 (2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。 al。 Soc。Lett。(1974); 26,163-166 [2] Jeanmaire DL,Van Duyne RP,Surface Raman SpectroelectroChemistry:Part I Part I.杂环,芳香和脂肪族胺上吸附在阳极氧化银电极上,J。Electroanal。化学。(1977); 84,1-20 [3] Albrecht MG,Creighton JA,在银电极处吡啶的反常强烈的拉曼光谱,J。am。化学。Soc。(1977); 99,5215-5217 [4] Moskovits M,表面粗糙度和被吸附在金属上的分子的拉曼散射强度增强,J。Chem。物理。(1978); 69,4159-4161 [5] Ding Sy,Yi J,Li JF,Ren B,Wu Dy,Panneerselvam R,Tian ZQ,基于纳米结构的基于纳米结构的增强拉曼的拉曼光谱,用于材料的表面分析。nat。修订版mater。(2016); 1,16021-16037 [6] Panneerselvam R,Liu GK,Wang YH,Ding Sy,Li JF,Wu Dy,Tian ZQ,表面增强的拉曼光谱:瓶颈和未来的方向。化学。社区。(2018); 54,10-25 [7] Yi J,You Em,Hu R,Graham D,Tian ZQ,ET。al。Soc。,半个世纪的表面增强拉曼光谱:回顾和透视,化学。Rev。 (2024);要出版。Rev。(2024);要出版。
Trimbow 87/5/9 和 172/5/9 加压定量吸入器 (pMDI) 和 Trimbow 88/5/9 NEXThaler 处方信息 请在开处方前参阅产品特性摘要 (SPC)。 介绍:每个 Trimbow 87/5/9 pMDI 输送剂量含有 87 微克 (mcg) 丙酸倍氯米松 (BDP)、5mcg 富马酸福莫特罗二水合物 (福莫特罗) 和 9mcg 格隆溴铵。每个 Trimbow 88/5/9 NEXThaler 输送剂量含有 88 微克 BDP、5 微克福莫特罗和 9 微克格隆溴铵。它们都相当于 100mcg BDP、6mcg 福莫特罗和 10mcg 格隆溴铵的定量剂量。每剂 Trimbow 172/5/9 pMDI 输送剂量含有 172mcg BDP、5mcg 福莫特罗和 9mcg 格隆溴铵。这相当于 200mcg BDP、6mcg 福莫特罗和 10mcg 格隆溴铵的计量剂量。适应症:COPD(仅限 Trimbow 87/5/9 pMDI 和 Trimbow 88/5/9 NEXThaler):用于中度至重度慢性阻塞性肺病 (COPD) 成人患者的维持治疗,这些患者无法通过吸入皮质类固醇和长效 β2-激动剂或长效 β2-激动剂和长效毒蕈碱拮抗剂的组合得到充分治疗(有关对症状控制和预防加重的效果,请参阅 SPC 的第 5.1 节)。哮喘(Trimbow 87/5/9):用于维持治疗哮喘,适用于使用长效β2-激动剂和中等剂量吸入皮质类固醇的维持组合仍未得到充分控制,并且在过去一年中经历过一次或多次哮喘发作的成年人。哮喘(Trimbow 172/5/9):用于维持治疗哮喘,适用于使用长效β2-激动剂和高剂量吸入皮质类固醇的维持组合仍未得到充分控制,并且在过去一年中经历过一次或多次哮喘发作的成年人。用法用量:用于成年患者(≥ 18 岁)吸入。慢性阻塞性肺病和哮喘:每天两次,每次 2 吸。最大剂量为每天两次,每次 2 吸。Trimbow pMDI 可与 AeroChamber Plus® 垫片装置一起使用。应建议患者即使无症状也要每天服用 Trimbow。如果在服药期间出现症状,应立即使用吸入式短效β2-激动剂缓解症状。在为哮喘患者选择 Trimbow 的起始剂量强度时,应考虑患者的病情严重程度、之前的哮喘治疗(包括吸入皮质类固醇 (ICS) 剂量)以及患者目前对哮喘症状的控制情况和未来哮喘恶化的风险。医生应定期重新评估患者,以确保其 Trimbow 剂量保持最佳,并且仅根据医嘱更改。应将剂量滴定至能够有效控制哮喘症状的最低剂量。Trimbow 的气溶胶颗粒具有超细粒径分布的特点。对于 BDP,这比具有非超细粒度分布的 BDP 配方具有更强的效果(Trimbow 中 100mcg 的 BDP 超细相当于 250mcg 的非超细配方中的 BDP)。禁忌症:对活性物质或任何赋形剂过敏。警告和注意事项:不适用于急性支气管痉挛发作或急性疾病加重的治疗。如果出现过敏或反常支气管痉挛,请立即停药。病情恶化:不应突然停止使用 Trimbow。心血管影响:由于存在长效β2-激动剂和长效毒蕈碱拮抗剂,心律失常、特发性瓣下主动脉瓣狭窄、肥厚性梗阻性心肌病、严重心脏病、闭塞性血管疾病、动脉高血压和动脉瘤患者慎用。治疗已知或怀疑 QTc 间期延长(男性 QTc > 450 毫秒,男性 > 470 毫秒)的患者时也应谨慎使用