hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
1超导性的意外和快速丧失,并恢复正常状态。结果,材料会迅速加热,如果不充分控制的话,可能会造成损坏[47]。
JHR是一种正在CADARACHE CADARACHE施工的新材料测试反应器。其高通量芯包含37个沿同心环的燃料组件,进入铝基质的肺泡。对于反应堆的运行,这些燃料组件中有二十七个在其中心构成了hafnium杆,而其他燃料组件也可以容纳其他燃料组件,而其他燃料组件也可以容纳铍径向反射器,可以容纳实验设备。为了准确预测其操作核心特性,也是其辐照性能,正在开发基于Apollo3®平台的最近开发的方案,该方案正在开发,该方案使用了子组方法来用于空间自屏蔽,特征的2D方法和3D非结构化的符合符合符号的尖塔nararet s n运输求解器。已建立并优化了JHR的2D模型,用于在晶格步骤中计算自屏蔽和凝结的横截面,这要归功于亚组方法和特征方法。根据Tripoli-4®随机参考计算进行基准测试。与以前的Apollo2方案相比,更精致的空间网格给出了更好的裂变率和反应性结果。经典的2步计算使用无限晶格配置的假设,这对于靠近中心的组件是合理的,但对于外围的组件是合理的。因此,考虑到每个组件的周围,正在设置一种新方法。新的3-步骤方案使用SN求解器尖塔,比传统的2步方案获得更好的结果。关键字:Apollo3®,JHR,确定性计算方案,S N方法这种方法将应用于包含实验设备并启用烧毁计算的异质JHR核心配置的3D建模。
摘要。大声液体提供了一种独特的手段来操纵细胞和液体,以在生物医学科学和转化医学中进行广泛应用。但是,由于多种因素,包括设备对设备变化,手动操作,环境因素,样本变异性等因素,标准化并保持当前流动性设备和系统的出色性能是一项挑战。在这里,为了应对这些挑战,我们提出了“智能的Acoustofluidics” - 一种自动化系统,涉及Acoustofluidic设备设计,传感器融合和智能控制器集成。作为一种概念证明,我们开发了基于人类脑器官培养物的基于智能的大量流体分解器。我们的迷你比较反应器由三个组成部分组成:(1)通过声学螺旋相位涡流方法进行无接触式旋转操作的转子,(2)用于实时跟踪旋转动作的摄像机,以及(3)基于增强学习的基于增强的学习控制器,用于旋转操纵的闭环调节。在训练基于增强学习的控制器和实验环境中,我们的迷你比率可以实现良好板中转子的自动旋转。重要的是,无论转子重量,液体体积和工作温度的波动如何,我们的迷你比较反应器都可以对转子的旋转模式,方向和速度进行良好的控制。此外,我们证明了我们的迷你比较反应器可以在长期培养过程中稳定地保持脑官的旋转速度,并增强脑官的神经分化和均匀性。与当前的Acoustofluidics进行了比较,我们的智能系统在自动化,鲁棒性和准确性方面具有出色的性能,突出了新型智能系统在生物电子学和微功能实验中的潜力。
摘要:利用活塞流反应器,实验研究了三种对称柴油沸程醚异构体的燃烧动力学。这些异构体分别是二正丁基醚 (DNBE)、二异丁基醚 (DIBE) 和二仲丁基醚 (DSBE)。流动反应器实验采用氧气作为氧化剂,氦气作为稀释剂,氧化在大气压和高压条件下进行,温度从 400 到 1000,间隔为 20 K。燃料、氧化剂和稀释剂的流速在不同温度下变化,以在化学计量条件下保持恒定的初始燃料摩尔分数 1000 ppm,停留时间为 2 秒。反应产物用气相色谱 (GC) 分析。根据结构,醚表现出不同程度的负温度系数 (NTC) 行为。然后将 GC 分析的形态结果与使用现有和新开发的化学动力学模型的模拟结果进行比较。大多数模拟产物浓度与实验数据具有合理的一致性。化学动力学模型用于阐明不同异构体的反应性和 NTC 行为的主要特征。化学动力学分析表明,三种异构体的燃烧行为受低温反应过程中形成的关键物种的影响。在常压下,DNBE、DIBE 和 DSBE 确定的关键物种分别是正丁醛、异丁醛和仲丁醇。
微生物在生物废水处理中起关键作用。由于各种微生物结构的不同条件,生物质形式的形式决定了有机化合物转化的效率和机制。但是,比较生物膜和活性污泥中微生物群落的研究结果经常发生冲突。因此,本研究比较了使用16S rRNA测序的杂种反应器中生物膜中细菌群落和活化污泥的组成和发展。统计分析包括鉴定生物膜特征和活性污泥,α和β多样性分析以及网络分析的分类单元。这些分析表明,生物膜细菌群落比激活的污泥社区更丰富,更多样化。在生物膜中的平均数量为1614,而活化污泥的平均数为993,而CHAO1(1735 vs. 1105)和Shannon(5.3 vs. 4.3)生物多样性指数的平均值显着更高。生物膜是硝化剂(例如硝基瘤,硝基螺旋体)和磷积聚生物体(Candidatus累积)的更好环境。生物膜共发生网络中的细菌彼此之间具有更多的连接(基于Spearman的等级相关系数),这表明它们的相互作用比活性污泥中的相互作用更多。
本研究分析了备用电源工艺的性能,该工艺使用新型化学循环填料床空气反应器氧化一批还原固体,同时加热高压流动空气。在这种布置中,固体被垂直于主空气流的扩散控制氧气流缓慢氧化,因此对所有反应粒子施加了非常长的氧化时间。由于随着反应的进行,O 2 向未反应的氧载体颗粒扩散的阻力增加,可以预期反应堆的热功率输出会随着时间的推移而衰减。在这项工作中,研究了反应堆和发电厂形成的动态系统的集成,发电厂利用反应堆的可变热输出来发电。评估了不同的案例研究,以实现能源生产的脱碳和可再生能源的储存。在所有情况下,反应堆的最大额定功率输出为 50 MW th,采用铁基或镍基颗粒作为氧载体。壁孔附近的质量和热传递的简化模型允许定义操作窗口和反应堆尺寸。在所选的案例中,每个单反应器在放电模式下运行约 4 – 5 小时(取决于工厂配置),作为备用发电机,将压缩空气流加热至约 1000 ◦ C,能量密度在 816 至 2214 kWh th /m 3 之间。研究了集成在新型化学链燃烧 (CLC) 反应堆中的回热式、蒸汽喷射式和联合循环发电厂架构中的燃气轮机。对于使用单反应器配置并通过有机朗肯循环 (ORC) 底部系统利用余热发电的系统,计算出循环效率高达 49%。还研究了一种更灵活的多反应器配置,以解决放电期间不可避免的功率输出衰减并提供功率输出可控性。当使用 H 2 作为还原气体时,平准化电力成本 (LCOE) 估计与文献中的系统元素相当。在能量充注阶段使用沼气还原固体被发现特别有利,对于使用铁基固体的参考反应器系统,LCOE 值介于 ~ 120 至 175 欧元/兆瓦时之间。如果在还原阶段捕获的 CO 2 被储存起来,这还可以实现负 CO 2 排放。
Cornes Technologies Limited 负责 Seki Diamond Systems 的高级董事总经理 Makoto Seki 表示:“我们很荣幸能与 Element Six 合作。我们的初始原型已经证明 E6 的技术可以成功集成到我们的平台上。我们相信,此次合作将为我们的学术客户提供另一个 Seki Diamond 平台,以利用无与伦比的技术加速他们的钻石材料研发计划。”
在低地球轨道(LEO)(例如,到月球)和长期任务(例如,到MARS)之外的人类空间探索仍然存在许多挑战。最大的问题之一是机组人员的可靠空气,水和食物供应。生物加成生命支持系统(BLSS)旨在使用生物反应器来克服这些挑战,以进行废物处理,空气和水的振兴以及粮食生产。在这篇综述中,我们着重于空间中的微生物光合生物过程和光生反应器,这些生物反应器允许去除有毒二氧化碳(CO 2)以及产生氧气(O 2)和可食用的生物量。本文概述了过去30年中BLSS项目的光生反应器和前体工作(在地面和太空中)进行的实验。我们讨论了不同的硬件方法以及对这些生物反应器测试的生物。尽管许多实验在地面上显示出成功的生物空气振兴,但对太空环境的转移远非微不足道。例如,在微重力条件下,气液转移现象不同,这不可避免地会影响培养过程和氧气产生。在这篇综述中,我们还强调了这项研究场中缺少的专业知识,为未来的空间光生反应器开发铺平了道路,我们指出了未来的实验,以掌握功能齐全的BLS的挑战。
(57) 摘要:公开了使用序批反应器处理废水的方法。该方法包括确定废水的预期流速,并响应于预期流速以连续流模式独立操作一个或多个反应器。还公开了序批反应器系统。该系统包括多个并行操作的反应器、装载子系统、测量子系统和控制器。控制器可以配置为响应于预期流速以批流模式或连续流模式独立操作每个反应器。还公开了改造现有序批反应器系统的方法和使用序批反应器系统促进废水处理的方法。