氧化镓 Ga 2 O 3 是一种很有前途的半导体电子材料。近年来,对其性质和合成技术进行了广泛的研究 [1,2]。不幸的是,对其外延生长的研究只集中在一个狭窄的最佳条件范围内。具体来说,还没有发表过关于宽区间温度变化对沉积速率影响的数据。这些数据对于彻底了解金属有机气相外延 (MOVPE) 的机制、充分考虑整个反应器容积内的化学和物理过程以及优化外延反应器的几何形状是必需的。在本研究中,研究了 MOVPE 中 Ga 2 O 3 沉积速率对宽区间温度变化的依赖关系。将获得的结果与众所周知的 GaN 和金属镓 (三甲基镓的单独热解) 的依赖关系进行了比较。为了排除反应器设计和温度测量方法对结果的影响,我们在类似条件下直接在同一反应器中测量了这些依赖关系。与任何其他化学气相外延工艺一样,MOVPE 中的沉积速率对温度的依赖性也具有三个明显的部分。在低温下,沉积速率受表面化学反应速率控制。这种生长方式称为动力学受限方式。在最简单的情况下,阿伦尼乌斯曲线的线性部分与之相对应。在存在分子氢甚至原子氢的情况下,动力学部分向低温(与金属有机化合物的单独热解依赖性相比)移动,这些氢可能由 V 族氢化物提供。在较高温度下,沉积速率受组分向表面的传输控制。
渗滤液是一种在垃圾填埋场中积累的固体废物形成的液体,其中包含多种污染物,尤其是有机化合物。蒸散量是消除渗滤液中化学氧需求(COD)的有效生物学过程。这种渗滤液处理方法还可以通过微生物燃料电池(MFC)过程产生电力。这项研究的主要目的是通过使用巨大的塔罗植物蒸散来评估COD去除的效率,并评估蒸发过程中MFC系统产生的潜在电能。该实验涉及一个实验室规模系统,该系统具有两个巨型芋头植物反应器(主反应堆)和一个对照反应堆。结果表明,COD的去除效率范围为28%至89%。主反应堆达到了最高的COD去除,在实验的第12天达到77%。相比,对照反应器在实验的第三天表现出最高的性能(89%COD去除)。主反应堆最低的COD去除率为28%,发生在第六天,对照反应堆的最小去除率为49%。该研究还包括测量电能的测量。在整个15天的实验中,产生的电能范围为2.15μW至104.78μW。主反应堆在第14天产生了最高的电能(104.78μW)。相比,对照反应器在实验的最后一天产生了最高的电能(44.55μW)。从初级反应器和对照反应堆产生的最低电能分别为2.15μW(第三天)和3.32μW(第六天)。
• 研究表明,很少有超薄涂层采用受控沉积方案,可选择性地产生所需的 H 2 和 O 2 反应,而不是光催化剂颗粒上不需要的氧化还原梭反向反应。通过开发用于平面电极和光催化剂颗粒 (AG) 上超薄氧化物涂层 (AI) 的控制合成、沉积和表征的通用方案,我们将更好地了解如何可控地设计界面以实现选择性所需反应,例如,HER 和氧化还原梭氧化,而不是 HOR 和氧化还原梭还原的相反不需要的反应。我们的协议开发与稳定性 (PEC、STCH) 和催化剂放置控制 (LTE、燃料电池) 的研究相协同,我们利用 EMN HydroGEN 联盟在 ALD (NREL)、理论 (LLNL) 和单粒子测量 (SNL) 方面的专业知识。
摘要:本文研究了利用廉价的细通道雾化CVD面对面加热板在c面蓝宝石衬底上生长α-Ga2O3薄膜的方法。由于高温会导致反应器变形,传统的细通道雾化CVD设备采用价格昂贵的抗变形AlN陶瓷作为反应器制作材料,限制了其推广和研究。本文采用面对面加热方式替代传统的单面加热方式,降低了对设备密封性的要求,因此可以用廉价的石英代替昂贵的AlN陶瓷制作反应器,大大降低雾化CVD设备的成本。研究了衬底温度和载气对α-Ga2O3薄膜晶体质量和表面形貌的影响。通过优化制作条件,获得了三角形晶粒,其边缘在原子力显微镜图像中清晰可见。通过吸收光谱分析,我们还发现该薄膜的光学带隙达到了5.24 eV。最后,我们在X射线衍射图中记录到了α-Ga 2 O 3 (0006)衍射峰的半峰全宽值为508角秒。
本研究旨在使用改进的 Stover Kincannon 动力学模型,研究使用混合上流式厌氧污泥床 (混合 UASB) 反应器降解豆腐废水时有机负荷率 (OLR) 的变化。该反应器在 OLR 变化为 1.5-12 kg COD m -3 d -1 和 HRT 为 12 - 24 小时的情况下运行 328 天。在 OLR 为 4.8 kg COD m -3 d -1 和 HRT 为 24 小时的情况下,在 140 天内实现了 86.41% 的较高 COD 去除率和 7700 mL 的沼气产量。观察了改进的 Stover-Kincannon 模型并获得了匹配的数据集。模型中,HRT 变化时获得的动力学值,参数 KB 和 μ max 分别为 3.7、12.97、2.42 mgL -1 d -1 和 0.59、9.41、0.014 mgL -1 d -1 。该模型是去除速率倒数与总负荷速率倒数的图,结果为一条直线。这表明 Stover-Kincannon 模型中底物去除速率受流入混合 UASB 反应器的有机负荷速率 (OLR) 的影响。
ca-looping代表了热化学能量储存最有前途的技术之一。基于CAO的碳酸化周期,此过程为其长期存储容量和高温提供了与太阳能发电厂相结合的很高潜力。先前的研究分析了CAL的不同配置,该CAL旨在提高效率。但是,基于集体模型的这些评估中的大多数都无法解释最关键的反应器中的规模效应。在这项工作中,综合设施的综合模型中包括了大规模碳酸碳纤维的详细1D模型。获得的结果用于评估可用的热量,该设备的最低技术零件负载,所需的储罐尺寸以及工厂的整体效率。大尺寸碳酸碳纤维操作的主要问题是去除热量,因此提出了多管内部冷却的反应器。设计的碳纤维在标称操作时提供80 MWTH,在最小零件负载操作下提供40 MWTH。储罐的尺寸取决于操作管理,在15小时内介于5,700-11,400 m 3之间。作为反应器负载的函数,通过操作图定义并呈现了系统的不同效率。
近年来,对熔融盐反应堆的全球兴趣重新引起了人们的兴趣 - 熔融盐燃料和/或冷却的高级反应堆以及与这些反应器的设计和技术有关的活动数量正在增长。熔融盐反应堆是IV代国际论坛进行进一步研发的六种反应堆技术之一。该技术适用于小型模块化反应堆,在安全,环境,经济学和不扩散方面,预计熔融盐反应器将比轻水反应堆具有优势。高运行温度,导致发电,被动衰减排热量和柔性燃料周期的效率提高是该反应堆技术的其他好处。
拟议的研究涉及“主题领域 1:将海藻转化为低碳燃料和生物产品”,并计划开发一种低成本连续催化热液液化 (CHTL) 工艺 (TRL2→4),该工艺能够处理腐蚀性原料,以展示将褐藻 Saccharina latissima (糖海带) 中的多糖最佳转化为低碳、稳定且高能量密度 (>35 MJ/kg) 的生物油/生物原油前体 (产量 >45 wt.%),用于可持续航空燃料 (SAF)。为了进一步提高可行性和可持续性,我们建议探索 i) 储存和预处理方法,以保存多糖,同时降低灰分/盐含量;ii) CHTL 反应器系统的低成本涂层,以承受与连续、热效率高、高通量反应器运行相关的腐蚀性反应条件。我们工艺开发工作的总体目标是制定适用于农场藻类生物精炼模式的糖海带连续 CHTL 加工蓝图,使温室气体排放减少 60% 以上(石油原油基线)。所提出的方法解决了目前在以下方面的知识空白:1)节能高效的海带储存,保存多糖;2)HTL 原料的高盐/灰分管理;3)生物原油的稳定性和热值;4)连续水热加工以获得高能生物原油;5)反应器腐蚀问题,以解决在更高 TRL 下生产生物原油的可行性。该项目将使用由低成本 304H 钢制成的具有耐腐蚀涂层的 CHTL 反应器系统,展示从糖海带中连续生产 500 小时或 3 周的油,并在考虑 SAF 途径的同时,通过 TEA 和 LCA 展示经济和环境影响。
• 在本实施例中,使用以 CO 2 为工作流体的文丘里泵将金属氧化物粉末(如铁锈、Fe 3 O 4 )吸入系统。 • 泵将铁锈粉末和 CO 2 推进系统的反应器,在那里铁锈中的铁与化合物中的氧分离。 • 铁以正离子的形式离开反应器;这些离子随后被电磁场加速,并通过永磁场从气流中转移。 • 然后铁离子被带负电的法拉第杯接收,在那里离子被中和并以纯铁金属的形式储存。 • 然后这种金属可以用作建筑或工业材料。 • 值得注意的是,该过程适用于任何离子键合的金属氧化物化合物,包括稀土元素。