替代能量:太阳能,氢。脱碳,环境。;化学安全:危害识别:风险评估,危害分析技术,个人保护设备,过程安全;流体力学:流体特性,流体静脉和流体动力学。层流和湍流,管道和通道中的流动。维度分析,边界层理论;传热:传导,对流和辐射,热交换器;传质:扩散,传质系数,蒸气平衡,蒸馏柱,设计和操作,吸收;过程计算:材料平衡,反应性和非反应性系统,能量平衡,焓计算。化学计量,限制反应物,产量。;过程工程:过程设计:流程表,过程控制;反应工程:反应动力学:速率定律,反应机制,批次,连续搅拌箱和塞流动反应器,催化;精炼和石化工艺和安全性。炼油厂和石化的不同操作单位
从合成前进的角度来看,等离子调制需要更多的合成手柄,并且系统的发展至关重要。在文献中,对反应动力学的控制是从1、3和6个面上的PD立方体生长的Ag岛; 11和各种程度的AU - Ag Janus纳米结构是通过调节盐浓度合成的。12在我们的组中,我们表明,在AU种子上的Ag生长中,可以利用强配体分子的嵌入来调节Au - Ag界面能量,8 B 8 B提供了一系列从核心 - 壳到偏心的结构,然后to to to Janus结构具有不同表面覆盖率的结构。此外,在“耗尽球”中调节配体和反应物浓度,从而控制了Au纳米颗粒(NPS)8 A和纳米码的Au岛的数量。10
羟基自由基 (OH) 是最先形成的。这些是极易反应的碎片或随机分子。它们可以以接近其扩散速度的速度与所有生物分子发生反应。这意味着它们会与路径上的第一个分子发生反应,而且几乎不可能阻止它们这样做。当羟基自由基与蛋白质、脂质(脂肪)或 DNA 发生反应时,它会夺取一个质子和一个电子,然后沉回到水的崇高化学稳定性中。但当然,夺取电子的行为会导致反应物缺少电子。因此,会形成另一个自由基,这次是蛋白质、脂质或 DNA 的一部分。这是所有自由基反应的基本特征——一个自由基会产生另一个自由基,如果这个自由基也具有反应性,那么就会发生链式反应。因此,自由基的基本特征是不成对的电子,而自由基化学的基本特征是链式反应。
问题 1,化学逆合成:化学逆合成试图提供可通过化学反应组合以合成所需分子的反应物。该过程定义了农业、医疗、材料发现等无数其他领域。图 1a 举例说明了逆合成过程,其中左侧的化学物质可以通过右侧的化学物质通过化学反应组合形成。在实验室中使用反复试验进行逆合成需要数年时间,甚至可能花费数十亿美元才能解决一种化学物质的问题。这导致人们对基于机器学习 (ML) 的解决方案产生了极大的兴趣。以前的工作已经能够产生有希望的结果,但也存在局限性。例如,专家定义的逆合成规则 [ 25 ] 依赖于人类对逆合成的不完全了解,并且随着更多规则的增加,其扩展性较差
摘要 :改进的露天空间原子层沉积 (SALD) 头用于在各种基底上制造复杂氧化物图案。共反应物保持在周围大气中,设计了一个由三个同心喷嘴和一个前体出口组成的简单注入头。可以轻松且可逆地修改金属前体出口的直径,从而可以直接形成具有不同横向尺寸的图案。成功证明了无掩模沉积均匀和同质的 TiO 2 和 ZrO 2 薄膜,横向分辨率从毫米到几百微米范围可调,同时将膜厚度保持在几纳米到几百纳米范围内,并在纳米级控制。这种局部 SALD 方法称为 LOCALD,还可以在结构化基底上进行层堆叠和沉积。
复杂的混合物在化学家的日常生活中至关重要。在分析化学领域尤其是这种情况,在该领域遇到了多种混合物,用于在广泛的领域中应用:药物或医学科学,食品或环境化学,微生物学等。生物学兴趣的混合物(提取物,生物流体等)特别复杂,因为它们包含各种浓度的多种化学结构,从小分子(氨基或有机酸,糖等)到较大的分子结构,例如脂质和蛋白质。天然产品的环境或食物样品或混合物也是如此。在合成化学中,复杂性具有不同的含义。的确,虽然混合物成分的数量更有限,但混合物的复杂性来自反应物,产物和中间体的非常相似的分子结构。同样,在药物科学中,由于存在杂质,其结构接近主要化合物之一,因此看似简单的纯化药物样品可能非常复杂。
无机碳种类和沉淀固体碳酸盐矿物质,例如Cal-Cite(Caco 3),白云岩(Ca,Mg(Co 3)2)和Siderite(Feco 3)。在整个反应过程中,矿物质溶解和降水反应速率在很大程度上取决于溶液和固体反应物之间的表面积接触。尽管镁铁质岩石的地质来源具有一定的表面暴露,但距离足够远,无法实现每年隔离10 GTON的目标。科学家将需要通过采矿或盖盖在地面上增加对地球表面的镁铁质岩石的接触,然后将CO 2地下泵送。与其依靠镁铁质岩石的天然沉积物来隔离CO 2,而是引起矿化反应的工程粘土产物可能是一种更可行,更可靠的方法,可以减少大量排放。
摘要:在过去十年中,电化学 CO 还原 (COR) 系统的可访问活动数量级增加了,特别是通过实施气体扩散电极 (GDE) 架构。随着 GDE 的有效几何面积(cm 2 到 m 2 )的扩大,反应器性能可能会因物理和化学空间变化而发生变化,而多相和多产品电化学系统的化学复杂性使这种变化变得复杂。这项工作通过多端口采样反应器测量和评估 COR 性能指标,以测量 COR GDE 通道下游的反应物和产物浓度。研究发现,氢气析出反应 (HER) 的法拉第效率 (FE) 在通道下游增加,这主要是由于 CO 分压的降低,而乙烯的选择性在通道下游保持相对恒定。这项工作强调了随着电化学反应器的物理扩大,性能的不均匀性,对 COR 和 CO2R 系统的未来扩展具有重要意义。R
动态共价键是通过可逆反应形成的,这意味着可以通过改变反应条件(例如温度、pH 值或浓度)来改变反应物和产物之间的平衡。可逆共价键的例子包括亚胺键、二硫键和硼酸酯键。这些键允许创建能够适应和响应外部刺激的材料,从而产生新的特性和功能。三聚体分子通常由于单体单元之间形成额外的化学键而表现出更高的化学稳定性。三聚体分子可以采用特定的结构排列,例如线性、环状或支链构型,具体取决于单体的几何形状和三聚化过程的性质。三聚化用于合成生物活性化合物和药物中间体。与单体相比,三聚体分子可能表现出增强的药理特性。三聚反应有助于生产具有定制特性和功能的高分子量聚合物。三聚体单体