TB疾病需要在几个月内与药物组合进行治疗。1–3不良反应(AE)与治疗依从性,治疗中断和治疗失败有关。4–8早期识别和对AE的管理对于避免抗药性或疾病进展的发展至关重要。在某些情况下,可能需要永久停止使用该药物和治疗方案。AE发生在接受结核病治疗的25-75%的人中。9–11由于AE定义的异质性,AE的发生率各不相同。当治疗期间出现新症状或实验室异常时,需要分化AE,新的疾病过程或矛盾的反应(例如,免疫重建炎症综合征[IRIS])。当认为可能与结核病药物有关的AE时,联合疗法的使用可能会导致难以确定该方案中的哪种药物是负责的。有限的证据证明在结核病治疗期间管理AE的策略。此处介绍的临床标准基于专家意见和最佳可用证据。新证据将被考虑随着计划的定期更新而出现。手稿还强调了在
肿瘤细胞由于加速生长而伴随着肿瘤微环境中的代谢应激(Payne,2022)。缺氧和营养供应不足会引发代谢应激,使肿瘤细胞重新编程为适应性机制。肿瘤细胞可以启动细胞适应性,重新调整其代谢表型以应对这些代谢压力(Jin and White,2007)。针对这些细胞适应性可能为抗肿瘤策略提供潜在的方法。为了应对各种细胞和代谢压力,激活转录因子 4(ATF4)会升高并作为调节器促进细胞适应生存(Wortel et al.,2017)。在癌症中,ATF4 已被确定为应激诱导的转录因子,并发现在一系列肿瘤中频繁上调。值得注意的是,已检测到 ATF4 在一些缺氧和营养不良的肿瘤区域高表达(Ye and Koumenis,2009)。 ATF4作为转录调控因子,广泛参与肿瘤中氨基酸代谢、自噬、氧化还原稳态和内质网应激的调控(图1、2)。本文全面总结了ATF4在肿瘤中的多种作用,并探讨了以ATF4为靶点的抗肿瘤策略的临床意义(表1)。
微生物不断在外部渗透压相差悬殊的环境之间转换。然而,目前还缺乏将物理约束和生物调节相结合的微生物渗透反应理论。我们在此提出了这样一种理论,利用被动反应和主动调节的时间尺度分离。我们证明,渗透调节物质的产生和细胞壁合成的调节有助于细胞应对细胞内拥挤效应并适应广泛的外部渗透压。此外,我们预测了一个阈值,高于该阈值细胞就无法生长,这种阈值在细菌和酵母中普遍存在。有趣的是,该理论预测,由于细胞壁合成调节,外部渗透压突然下降后,细胞生长会急剧加速。我们的理论合理化了裂殖酵母在振荡渗透扰动后观察到的异常快速生长,预测的生长率峰值与实验测量值定量匹配。我们的研究揭示了渗透反应的物理基础,对微生物生理学产生了深远的影响。17
摘要 在任何癌症领域,寻找可靠的分子生物标志物来补充临床实践都是一项极具挑战性的工作。尿路上皮癌是一种非常异质性的疾病,全身治疗的反应和根治性膀胱切除术后的结果都很难预测。下一代测序和全基因组或转录组分析等分子生物学的进展为全面了解疾病背后的生物学提供了有希望的平台,并可以识别出新兴的预测性生物标志物。此外,对患者治愈性治疗后的复发风险进行分类,甚至预测传统或靶向治疗的益处,是一项极具挑战性的工作,可能会重塑个性化治疗的选择和疾病监测。虽然已经取得了进展,但目前在临床环境中没有使用分子生物标志物来预测新辅助或辅助环境中对全身药物的反应,突显出相关的未满足需求。在这里,我们旨在介绍分子生物标志物在预测尿路上皮癌对全身药物的反应方面的新兴作用。ª 2021 年《亚洲泌尿外科杂志》编辑部。由 Elsevier BV 制作和托管 这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
摘要 — 在脑机接口或神经科学应用中,广义典型相关分析 (GCCA) 通常用于提取关注同一刺激的不同受试者神经活动中的相关信号成分。 这可以量化所谓的受试者间相关性,或提高刺激后大脑反应相对于其他(非)神经活动的信噪比。 然而,GCCA 不了解刺激:它不考虑刺激信息,因此不能很好地处理较少量的数据或较小的受试者群体。 我们提出了一种基于 MAXVAR-GCCA 框架的新型刺激知情 GCCA 算法。 我们展示了所提出的刺激知情 GCCA 方法的优越性,该方法基于一组受试者聆听相同语音刺激的脑电图反应之间的受试者间相关性,尤其是对于较少量的数据或较小的受试者群体。
近年来,RNA 测序激发了大量的研究领域。大多数方案依赖于在逆转录反应过程中合成更稳定的 RNA 分子互补 DNA (cDNA) 拷贝。结果 cDNA 池经常被错误地认为在数量和分子上与原始 RNA 输入相似。遗憾的是,偏差和伪影会混淆结果 cDNA 混合物。依赖逆转录过程的人们在文献中经常忽视或忽略这些问题。在这篇评论中,我们向读者展示了 RNA 测序实验过程中逆转录反应引起的样本内和样本间偏差和伪影。为了打消读者的疑虑,我们还提供了大多数问题的解决方案并介绍了良好的 RNA 测序实践。我们希望读者能够利用这篇评论,从而为科学合理的 RNA 研究做出贡献。
摘要:为研究 Ni 与 GaAs 衬底之间的固相反应,利用磁控溅射技术在 GaAs 衬底上生长不同厚度的 Ni 薄膜,并进行原位 X 射线衍射 (XRD) 退火。利用原位和非原位 XRD、极图和原子探针层析成像 (APT) 研究了厚度对金属间化合物形成的影响。结果表明,20 nm 厚的 Ni 薄膜与 GaAs 衬底呈现外延关系,沉积后为 (001) Ni//(001) GaAs 和 [111] Ni//[110] GaAs。增加薄膜厚度会导致 Ni 薄膜织构的变化。这种差异对 Ni 3 GaAs 的形成温度有影响。该温度随着厚度的增加而降低。这是由于初始 Ni/GaAs 界面的相干/非相干性质所致。Ni 3 GaAs 相在约 400 ◦ C 时分解为二元和三元化合物 xNiAs 和 Ni 3 − x GaAs 1 − x。与 Ni 3 GaAs 类似,第二相的分解温度也取决于 Ni 层的初始厚度。
摘要:本文提出了不同强度对大地圆顶结构的影响的确定。根据常规的八面体设计了分析圆顶的结构,该结构是根据创建其拓扑的两种不同的方法。使用了四个不同强度和记录持续时间的地震记录,这使得对8个模型进行数值分析成为可能。设计的空间结构是带有钢横截面的圆顶,这一点毫无疑问地以其轻度和覆盖非常大的面积的可能性,而无需使用内部支撑。设计钢圆顶目前是构造师和建筑师的挑战,他们考虑了他们的美学考虑。使用时间历史方法,该论文在应用不同方向(两个水平的“ X”和“ Y”和一个垂直“ Z”)中呈现了地震响应。显示了强制振动和记录强度的值,在此基础上,试图确定哪种地震记录可能对根据两种不同的结构拓扑而产生的设计的地质圆顶可能更不利。为此,使用了FFT(快速傅立叶变换)方法。还分析了结构的最大加速度和位移。进行的分析表明,地震激发对大地圆顶结构的影响,具体取决于塑造其拓扑的应用方法(方法1和2)。此外,该分析可能有助于评估偶然地震的影响。本文无疑将在设计地震区域的地球圆顶结构中有用。
摘要:蛋白质氨基酸脯氨酸在植物发育和应激反应中起着至关重要的作用,远远超过其在蛋白质合成中的作用。然而,脯氨酸这些额外功能的分子机制和相对重要性仍在研究中。有充分的证据表明,应激反应和发育过程都与脯氨酸的积累有关。在应激条件下,脯氨酸被认为赋予应激耐受性,而在生理条件下,它有助于发育过程,特别是在生殖阶段。由于脯氨酸作为相容性渗透调节剂和潜在活性氧 (ROS) 清除剂的特性,它的大部分有益作用历来被归因于其在植物中积累的物理化学后果。然而,新出现的证据表明脯氨酸代谢是这些有益作用的主要驱动因素。最近的报告表明,脯氨酸代谢除了支持生殖发育外,还可以通过控制根分生组织中的 ROS 积累和分布来调节根分生组织的大小。脯氨酸和 ROS 之间的动态相互作用凸显了植物恢复力和生存所必需的复杂调节网络。这种微调机制由分区脯氨酸代谢的促氧化和抗氧化特性所促成,可以调节氧化还原平衡和 ROS 稳态,可能解释了脯氨酸的许多多重作用。这篇综述以独特的方式整合了脯氨酸在 ROS 清除和信号传导中的双重作用的最新发现,提供了迄今为止发表的最新研究的最新概述,并提出了一种统一的机制,可以解释脯氨酸在植物发育和应激防御中的许多多重作用。通过关注脯氨酸和 ROS 之间的相互作用,我们旨在全面了解这一拟议机制,并强调其在提高作物对环境压力的恢复力方面的潜在应用。此外,我们还解决了当前理解上的差距,并提出了未来的研究方向,以进一步阐明脯氨酸在植物生物学中的复杂作用。
简报纸简介这是一份简报论文,代表一组来自不同学科的专家,这些专家从不同的学科中提取了有利于对COVID-19疫苗的不良反应的定制补偿计划。如下所述,我们认为,无故障赔偿计划可以在紧急Covid-19疫苗的可接受性方面发挥有价值的作用。背景:Covid-19-19疫苗的可接受性以及法律保障的重要性,以确保任何Covid-19-19疫苗的广泛吸收对于缓解社会疏远法规并确保逐渐恢复正常的公共和经济生活至关重要。吸收将取决于确保足够的疫苗供应和创建强大的分配方案。这也将取决于公众对疫苗(或疫苗)的安全性,生产和分配它们的制造商和卫生工作者的勤奋以及法律保障措施的充分性,以防止和补偿无意义的伤害。疫苗开发的前所未有的速度和必要的推广范围可能会对吸收构成重大挑战。有关疫苗态度和社会学研究的调查数据表明,在全球和国家一级流行疫苗犹豫不决。完全拒绝疫苗接种仍然很少见,并且仅限于一小部分人口。在大多数情况下,人们犹豫,人们延迟,选择甚至彻底拒绝疫苗接种,与特定的疫苗和特定的时间有关。现在是这样做的。1因此,投入足够的资源来创造条件至关重要,从而最大程度地吸收和最大程度地减少出现犹豫的机会。COVID-19疫苗将基于的新型技术平台,有针对性的虚假信息运动,以及在俄罗斯和中国发射的较少研究的疫苗的报告已经有助于对领先疫苗候选者的安全性不确定性。一旦开始推出,任何不利影响的报告可能会加剧现有的问题 - 是否已确认与疫苗有关。在1976年,人们担心迫在眉睫的大流行引发了美国对猪流感(H1N1)的新疫苗的快速发展和全国范围的推出。缺乏大量的H1N1验尸和疫苗引起的人口中疫苗造成的Guillain-Barré综合征病例的报道,导致疫苗接种计划突然停止,福特政府内的政治危机以及美国疾病控制与预防中心(CDC)的领导力变化。2谣言和阴谋理论也可能发生有关安全性和疫苗接种理由的理论。虽然经常说明当权者的意图信任问题,但这些谣言可能会损害疫苗运动。自2019年以来,新埃博拉疫苗引起的不育的谣言,该疫苗最初是在