在过去的几十年里,食品行业通过使用可编程逻辑控制器 (PLC) 实现生产自动化,提高了产品质量,同时缩短了生产时间和降低成本。然而,许多生产工厂仍然需要一定程度的手动专家交互,主要是因为生产过程并非 100% 受控。操作员通常仍在现场采集质量样品、重新调整单元操作控制或解决故障。由于预测精度和计算速度的提高,基于物理的“数字孪生”在虚拟开发设备方面越来越受欢迎。数字孪生使工程师能够在单元投入生产之前找到最佳设计。但是,这些数字孪生无法在操作级别部署,因为它们可能很复杂或反应速度太慢而无法跟上操作速度。本文基于几个示例解释了一套降低在生产车间实施数字孪生障碍的新解决方案。这将为食品生产行业带来可观的投资回报 (ROI)。它们包括以下技术:
全氟烷基和多氟烷基物质(PFA),导致它们在自然环境中的广泛存在。这是由于碳 - 氟键的显着稳定性,在自然环境中很难化学降解。pfass通过每天消费水和食物积累在人体中,这可能会导致潜在的健康影响,例如免疫,代谢和神经发育作用。因此,鉴于近年来其毒性和生物利益性能,全球对PFA的修复的关注越来越大。电化学晚期氧化过程(EAOPS)已开发用于修复PFASS,并已应用于废水处理中。在这些过程中,一种高强大的氧化剂羟基自由基((•)OH)是在溶液中产生的,可以氧化有机污染物。Eaops已成为一种环保和有效的治疗过程,以破坏PFAS。但是,它们的反应速度缓慢,性能稳定性差,高能量消耗和电极侵蚀阻碍了其用于水处理的商业化。本文概述了最先进的阳极材料及其通过电化学修复以及未来的推荐修补的相应降解效率。提供了有关基本原理和实验设置的全球视角,检查并讨论了不同的阳极电极,以及EAOPS对PFAS修复的挑战。
摘要:背景:不同的药物会损害额叶皮质,特别是与情绪和认知功能有关的前额叶区域,导致药物滥用者解码情绪缺陷。本研究旨在通过面部、身体和厌恶情绪识别探索药物滥用者的认知障碍,扩大情绪处理的研究范围,测量准确性和反应速度。方法:我们招募了 13 名可卡因成瘾者和 12 名酒精成瘾者,他们在意大利接受治疗服务,并与 33 名匹配的对照组进行比较。实验评估包括面部情绪和身体姿势识别任务、厌恶评级任务和 Barrat 冲动量表。结果:我们发现情绪过程受到可卡因和酒精的不同影响,这表明这些物质会影响不同的大脑系统。结论:药物滥用者在面部、身体和厌恶情绪的阐述方面似乎不太准确。考虑到参与者没有认知障碍,我们的数据支持情绪障碍独立于认知功能损害而出现的假设。
摘要:假肢手的常规使用显着增强了amputees的日常生活,但它经常引入认知载荷并降低反应速度。为了解决这个问题,我们引入了一个可穿戴的半自治层次控制框架,该框架是为截肢者量身定制的。从人类的视觉处理流中汲取灵感,将完全自主的仿生控制器集成到假肢手部控制系统中,以折断认知负担,并以人类在循环(HIL)控制方法中进行补充。在腹流阶段,控制器整合了用户手眼协调和生物本能中的多模式信息,以分析用户的运动意图并操纵视图域中的原始开关。通过HIL控制策略实现了向背流阶段的过渡,将精确的力控制与假肢的传感器和用户的肌电图(EMG)信号相结合。实验结果证明了所提出的界面的有效性。我们的方法提出了一种更有效的机器人控制系统与人之间相互作用的方法。
刺激反应性水凝胶可以感知环境提示并相应地改变其体积,而无需其他传感器或执行器。这可以显着降低所得设备的大小和复杂性。但是,由于水凝胶的响应量变化通常是统一的,因此它们需要局部和随时间变化的机器人应用挑战。在此提出了使用可寻址和可调的水凝胶构建块(称为软素素执行器(SVA) - 具有可编程时空变形的均方根水凝胶结构。svas,利用快速反应速度和PNIPAAM的共溶性特性来生成高度相互连接的水凝胶孔结构,从而使可调的肿胀比,溶胀率和Young的模量在一个简单的,单性的铸造过程中与SVA合成sva sva-sva Uns.sva compatibles compatible compatible compatience compatience compatible compatible cossible。通过设计每个体素的位置和肿胀特性,并激活体素中的嵌入式焦耳加热器,可以实现时空变形,从而实现了可以使异构水凝胶结构操纵物体,避免障碍物,产生行进波和变形的形状。一起,这些创新为可调,不受限制和高度自由度的水凝胶机器人铺平了道路,这些机器人可以适应并应对非结构化环境中不断变化的条件。
纵观战争史,人类的感觉和推理一直是引导投掷武器和直接打击目标的主要工具。然而,在战争的机械化和电子化时代,威胁数量和反应速度出现了新的要求,因此,帮助人类发挥主动性变得至关重要。继 19 世纪下半叶发现和研究光电现象之后,20 世纪初欧洲的科学努力成功开发了用于防空导弹和发热设备的第一批红外 (IR) 探测元件。1933 年,柏林大学的 E. W. Kutzscher 发现硫化铅 (PbS) 是一种光电导材料 [1]。第一次世界大战和第二次世界大战之间的时期以光子探测器和图像转换器的发展为标志。允许夜视的图像转换器是在第二次世界大战前夕开发的,引起了军方的极大兴趣。 1943 年,这些研发成果已准备好投入工业生产,PbS 成为战争期间部署在各种应用中的第一个实用红外探测器 [2]。这些秘密进行的工作导致了最灵敏的德国红外探测器的制造,其结果直到 1945 年之后才为人所知。R. J. Cashman 在美国领导了类似的努力,于 1944 年在西北大学生产了 PbS 探测器 [3, 4]。本文感兴趣的红外辐射源
4-下列哪一项关于生化反应中自由能变化(ΔG)的陈述是正确的?A. 如果ΔG为负,则反应会自发进行,同时损失自由能。B. 在放能反应中,ΔG为正。C. 当反应物浓度为 1.0 mol/L 且 pH 值为 7.0 时,标准自由能变化表示为ΔG0 D. 在吸能反应中,ΔG为负。5-如果反应的 ΔG 为零:A. 反应实际上会完成并且基本上是不可逆的。B. 该反应是吸能的。C. 该反应是放能的。D. 只有在可以获得自由能的情况下,反应才会进行。E. 系统处于平衡状态,没有发生净变化。 6-ΔG0' 定义为以下情况下的标准自由能电荷:A. 反应物的浓度为 1.0 mol/LB 反应物的浓度为 1.0 mol/L,pH 值为 7.0。C. 反应物的浓度为 1.0 mmol/L,pH 值为 7.0。D. 反应物的浓度为 1.0 μmol/LE 反应物的浓度为 1.0 mol/L,pH 值为 7.4。7-如果 ΔG ⁰ = -10 kcal/mole,则意味着:A) 该反应是非自发的 B) 该反应可与吸能反应相结合 C) 该反应速度较慢 D) 该反应可能是水解反应 E) B+D
主要积分1。我们介绍了世界上首次成功的爆炸引擎的航天示范。2。旋转爆炸引擎(RDE)和脉冲爆炸引擎(PDE)在飞行环境下成功地在太空中操作,并成功地获取了这些发动机的操作数据。3。这项研究的结果表明,爆炸引擎非常接近实际用作航空航天发动机,例如用于深空探索的踢电机。研究背景和内容爆炸引擎在极高的频率(1-100 kHz)下产生爆炸和压缩波,以显着提高反应速度,从而实现了火箭发动机的重量的根本性降低,并通过轻松产生推力来增强其性能。目前,研究正在日本,北美,欧洲,亚洲和澳大利亚进行积极进行,以期为空间使用的高性能引擎商业化。这个联合研究小组成功地实现了全球首次飞行引擎引擎的展示。这项研究中开发的爆炸引擎系统被加载到Sounding Rocket S -520-31的任务部分,并于2021年7月27日上午5:30从Jaxa Uchinoura Passion Center(USC)发射。在第一阶段火箭分离后,RDE(6秒操作,500 -N推力)和PDE(2秒操作x 3次)在空间中正常操作,以及远程组和恢复模块大鼠在空间中正常操作。燃料是甲烷,氧化剂是氧气。
在合成过程中,纳米材料会逐渐发生转变,从而产生明确的纳米晶体特性。目前,工业上最广泛使用的是纳米材料的批量合成。然而,由于批量反应器内混合不一致、局部浓度和温度变化,出现了可重复性和可扩展性问题。在流动合成中,使用微流体反应器可以克服这些限制,因为大的表面积与体积比可以增强热量和质量传递,从而加快反应速度并提高产量。[4c,5] 在快速化学中,化学转化发生得非常快,并且仅通过混合过程进行控制。因此,微流体系统内的增强混合使涉及不稳定中间体的快速连续反应能够发生 [6],由此产生的均质环境提高了对所需产品的选择性,从而提高了反应产量。此外,流动化学可以通过控制反应的停留时间,在不稳定的反应性物质分解之前将其分离 [7],方法是调节反应物的流速或微反应器长度。高混合性是微流体系统的一个关键优势,尽管在层流状态下,缓慢扩散占主导地位。[8] 微通道内产生的抛物线速度分布导致较长的停留时间,这不可避免地会产生粒度分散性,[10,35] 如图 1A 所示。促进对流并增强微通道内的混合是减少这种多分散性的一种方法,例如,通过在拐角和弯道引入 Dean 涡流或通过分段液-液/液-气流动引入 Taylor 涡流,[10,36] 如图 1B 所示。此外,流动化学中对反应参数的严格控制是实现实验室间反应条件标准化的一个主要优势,从而提高了实验的可重复性。[10] 在安全性方面,微流体系统消耗的危险试剂量较少,降低了安全风险,并允许使用否则会非常危险的极端化学条件。
数据科学为各个学科的从业者解锁了强大的工具。正如这些工具可以帮助善意的行为者完成有价值的工作(如果没有这些工具,这些工作就不可能或不切实际)一样,它们也可以帮助粗心或不诚实的行为者造成新形式的伤害。这种伤害可以从侵犯隐私到公开歧视,其影响往往与评估人员感兴趣的下游结果交织在一起。在一个令人震惊的例子中,密歇根州的一名黑人男子因面部识别错误而被错误逮捕,并被关押了 30 个小时才获释。正如我们将要探讨的,评估人员的干预可能会避免这个令人不安的结果。在数据科学的背景下,有几个因素使道德和公平变得重要。首先,许多数据科学工具的运作范围比传统替代方案更广,而人为监督范围更窄。扩大影响范围可能会加剧有问题的做法的后果,而减少监督可能会限制专家发现和纠正问题的能力。其次,一些从业者认为数据科学工具会自动关注道德和公平,或者使用机器智能会使道德和公平变得过时。正如我们所探索的,这两种假设都不是可靠的;大量文献表明,数据科学可以放大人类的缺陷并引入自身的问题(Mehrabi 等人,2021 年)。最后,数据科学工具使问责问题变得复杂:当数据和算法导致违反道德或公平时,它们无法像个人和组织那样进行赔偿或参与司法系统。这些因素共同导致了对数据科学工具评估和监测的迫切需求,重点是道德和公平。这种需求并没有被忽视。自 2018 年以来,欧盟委员会发布了人工智能道德使用指南(人工智能高级专家组,2018 年;提案,2021 年)。联合国教科文组织和经合组织也发布了自己的建议(联合国教科文组织,2021 年;经合组织法律文书,2019 年)。此外,一旦发现违反道德和公平的行为,会引起媒体的关注。尽管数据科学的成熟速度比管理机构的反应速度要快,但趋势表明社会正在发生转变